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Abstract. We develop a power series representation and estimates for an effective
action of the form

ln

∫

ef(φ,ψ)dµ(φ)
∫

ef(φ,0)dµ(φ)

Here, f(φ, ψ) is an analytic function of the real fields φ(x), ψ(x) indexed by x in a finite set
X , and dµ(φ) is a compactly supported product measure. Such effective actions occur in
the small field region for a renormalization group analysis. The customary way to analyze
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them is a cluster expansion, possibly preceded by a decoupling expansion. Using methods
similar to a polymer expansion, we estimate the power series of the effective action without
introducing an artificial decomposition of the underlying space into boxes.



I. Introduction

We would like to propose a tool for use in the construction of certain bosonic field

theories. To provide a context for the application of this tool, we start with a very schematic

description of a typical Wilson style renormalization group construction.

One first expresses, formally, all quantities of interest as functional integrals like

G(Ψ) = ln

∫

eA(Ψ,Φ) dµ(Φ)
∫

eA(0,Φ) dµ(Φ)

All of the correlation functions, for example, may be expressed in terms of derivatives of

G(Ψ) with respect to the source field Ψ. The integration field Φ contains infinitely many

degrees of freedom. But some of those degrees of freedom are more important than others.

Therefore one factors the measure dµ(Φ) =
∏∞
ℓ=1 dµℓ(ϕℓ), with the less important degrees

of freedom having smaller index ℓ, and expresses

G(Ψ) = ln

∫

eA(Ψ,ϕ1,ϕ2,···)
∏∞
ℓ=1 dµℓ(ϕℓ)

∫

eA(0,ϕ1,ϕ2,···)
∏∞
ℓ=1 dµℓ(ϕℓ)

Now one performs one integral at a time. Precisely, define the “effective action at scale n”

to be

An(Ψ, ϕn+1, ϕn+2, · · ·) = ln

∫

eA(Ψ,ϕ1,ϕ2,···)
∏n
ℓ=1 dµℓ(ϕℓ)

∫

eA(0,ϕ1,···,ϕn,0,···)
∏n
ℓ=1 dµℓ(ϕℓ)

Then we have the recursion relation

An(ψ) = ln

∫

eAn−1(ψ,φ) dµn(φ)
∫

eAn−1(0,φ) dµn(φ)

where φ = ϕn and ψ = (Ψ, ϕn+1, ϕn+2, · · ·).
Typically, the total contribution arising from large φ fields, for example field configura-

tions with φ or appropriate derivatives large, is very small, reminiscent of large deviations

in probability theory. On the other hand, contributions arising from integrals over re-

gions where φ is small are physically important and must be analyzed in some detail.

This “small–field part” is extracted by replacing the measure dµn(φ) by a measure dµ̃n(φ)

that is supported on fields that obey (model and scale dependent) smallness conditions.

Standard tools to prove the existence and control properties of

ln

∫

eAn−1(ψ,φ) dµ̃n(φ)
∫

eAn−1(0,φ) dµ̃n(φ)
(I.1)
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are polymer expansions [C, Sa, Se, Si]. In the case that the actions are real analytic

functions of the fields, we propose a related but different approach.

To avoid technical details, we assume that the fields are defined on a finite set X (that

is, the fields are elements of IRX). Think of X as an approximation to space, which is, for

example, ZZd or IRd. Fix a normalized measure dµ0(t) on IR that is supported in |t| ≤ r

for some constant r. Thus
∫

|t|k dµ0(t) ≤ rk for all k ∈ IN (I.2)

We endow IRX with the ultralocal product measure

dµ(φ) =
∏

x∈X

dµ0

(

φ(x)
)

(I.3)

Furthermore, we consider functions f(ψ;φ) that are analytic on a neighbourhood of

the origin in IRX × IRX (the space of all pairs (ψ, φ) of fields). We think of f(ψ;φ) as

playing the role of An−1(ψ, φ) in (I.1). In this note, we introduce norms for such functions

that ensure the existence and analyticity of

g(ψ) = ln

∫

ef(ψ;φ) dµ(φ)
∫

ef(0;φ) dµ(φ)
(I.4)

whenever the norm of f(ψ;φ) is small enough. The norms are based on the power series

expansion

f(ψ;φ) =
∑

m,n≥0

∑

x1,···,xm∈X

y1,···,yn∈X

a(x1, · · · ,xm ; y1, · · · ,yn) ψ(x1) · · ·ψ(xm)φ(y1) · · ·φ(yn)

of f around the origin in IRX × IRX . Here the coefficients are chosen to be invariant under

permutations of x1, · · · ,xm and y1, · · · ,yn. In addition to the existence of the logarithm

(I.4), we obtain estimates on the coefficients in the power series expansion

g(ψ) =
∑

m≥0

∑

x1,···,xm∈X

b(x1, · · · ,xm) ψ(x1) · · ·ψ(xm)

Here is a simple example of one of these norms. Fix κ > 0 and define

‖f(ψ;φ)‖ =
∑

m,n≥0

κm(4r)nmax
x∈X

max
1≤i≤m+n

∑

x1,···,xm+n∈X

xi=x

∣

∣a(x1, · · · ,xm ; xm+1, · · · ,xm+n)
∣

∣

‖g(ψ)‖ =
∑

m≥0

κmmax
x∈X

max
1≤i≤m

∑

x1,···,xm∈X
xi=x

∣

∣b(x1, · · · ,xm)
∣

∣
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In a typical application, X is, for example, a discrete torus approximating a lattice, and

the coefficients a, b are translation invariant. The maxima in the norms are introduced to

break translation invariance.

The main result, Theorem III.4, states that if ‖f‖ < 1
16 then the logarithm g(ψ) exists

and

‖g‖ ≤ ‖f‖
1−16‖f‖

We consider more general norms than those given above. See Definitions II.6 and III.1. In

particular, when X is a metric space, spatial exponential decay may be incorporated. See

Definition II.5.

The algebraic structure of the proof of Theorem III.4 is similar to that of the con-

struction of the logarithm using polymer expansions [Si, §V.7]. Expand ef(ψ;φ) as

1 +
∞
∑

k=1

1
k!

∑

Z1,···,Zk⊂X

pairwise disjoint

A(Z1) · · ·A(Zk)

where A(Z) is the sum of all products of monomials in the power series expansion of f for

which

◦ the union of the supports for the φ fields in the monomials(1) involved equals Z, and

◦ the intersection graph of the supports for the φ fields in the monomials involved is

connected.

Since the measure dµ(φ) is ultralocal,

∫

ef(ψ;φ) dµ(φ) = 1 +
∞
∑

k=1

1
k!

∑

Z1,···,Zk⊂X

pairwise disjoint

Φ(Z1) · · ·Φ(Zk)

where Φ(Z) =
∫

A(Z) dµ(φ). If the “pairwise disjoint” condition were not there, the right

hand side would be exactly exp
{
∑

Z⊂X Φ(Z)
}

and taking the logarithm would be trivial.

We use a standard procedure, that appears in all derivations of cluster expansions, to treat

the “pairwise disjoint” condition and get the representation for the logarithm.

The restriction to ultralocal measures (I.3) is too severe to be directly useful. In

part (i) of Proposition IV.1, we discuss the behaviour of our norms under linear changes

of variables that might be used to diagonalize the covariance of a measure of interest.

Part (ii) of this Proposition controls the behaviour of these norms under substitutions like

f(ψ, φ) = g(ψ + φ) that occur in renormalization group steps.

We developed the methods described in this paper in order to apply them to the

(time–)ultraviolet analysis of a model for a Bose gas. For these models we must deal with

(1) The support for the φ fields in the monomial a(~x ; ~y) ψ(x1) · · ·ψ(xm)φ(y1) · · ·φ(yn) in the power
series expansion of f is the set {y1, · · · ,yn} ⊂ X.
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complex rather than real fields [BFKT1, BFKT2]. In a more technical paper [BFKT3], we

develop analogs of the results of this paper for complex fields, as well as extensions and gen-

eralizations that are adapted to the geometry and scales of a large field/small field analysis

of many–boson systems. As a sample application of the tool proposed here, [BFKT4] con-

tains a complete description of the pure small field part of the (time–)ultraviolet analysis

of the partition function for such a Bose gas.
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II. Norms

In this section we specify the precise class of norms that we will use. We start by

introducing some notation that will allow us to write the Taylor expansion of an analytic

function f(ψ1, · · · , ψs) of s fields in a compact form.

Definition II.1 (n–tuples)

(i) Let n ∈ ZZ with n ≥ 0 and ~x = (x1, · · · ,xn) ∈ Xn be an ordered n–tuple of points of

X . We denote by n(~x) = n the number of components of ~x. Set

φ(~x) = φ(x1) · · ·φ(xn)

If n(~x) = 0, then φ(~x) = 1. The support of ~x is defined to be

supp ~x = {x1, · · · ,xn} ⊂ X

(ii) For each s ∈ IN, we denote(1)

X(s) =
⋃

n1,···,ns≥0

Xn1 × · · · ×Xns

The support of (~x1, · · · , ~xs) ∈ X(s) is

supp(~x1, · · · , ~xs) =
s
⋃

j=1

supp(~xj)

If (~x1, · · · , ~xs−1) ∈ X(s−1) then (~x1, · · · , ~xs−1,−) denotes the element of X(s) having

n(~xs) = 0. That is, X0 = {−} and φ(−) = 1.

(iii) We define the concatenation of ~x = (x1, · · · ,xn) ∈ Xn and ~y = (y1, · · · ,ym) ∈ Xm to

be

~x ◦ ~y =
(

x1, · · · ,xn,y1, · · · ,ym) ∈ Xn+m

For (~x1, · · · , ~xs), (~y1, · · · , ~ys) ∈ X(s)

(~x1, · · · , ~xs) ◦ (~y1, · · · , ~ys) = (~x1 ◦ ~y1, · · · , ~xs ◦ ~ys)

(1) We distinguish between Xn1 × · · · × Xns and Xn1+···+ns . We use Xn1 × · · · × Xns as the set
of possible arguments for ψ1(~x1) · · ·ψs(~xs), while Xn1+···+ns is the set of possible arguments for
ψ1(~x1 ◦ · · · ◦ ~xs), where ◦ is the concatenation operator of part (iii).
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Definition II.2 (Coefficient Systems)

(i) A coefficient system of length s is a function a(~x1, · · · , ~xs) which assigns a number to

each (~x1, · · · , ~xs) ∈ X(s). It is called symmetric if, for each 1 ≤ j ≤ s, a(~x1, · · · , ~xs) is

invariant under permutations of the components of ~xj .

(ii) Let f(ψ1, · · · , ψs) be a function which is defined and real analytic on a neighbourhood

of the origin in IRs|X|. Then f has a unique expansion of the form

f(ψ1, · · · , ψs) =
∑

(~x1,···,~xs)∈X(s)

a(~x1, · · · , ~xs) ψ1(~x1) · · ·ψs(~xs)

with a(~x1, · · · , ~xs) a symmetric coefficient system. This coefficient system is called the

symmetric coefficient system of f .

Definition II.3 (Weight Systems) A weight system of length s is a function which

assigns a positive extended number w(~x1, · · · , ~xs) ∈ (0,∞] to each (~x1, · · · , ~xs) ∈ X(s) and

satisfies the following conditions:

(a) For each 1 ≤ j ≤ s, w(~x1, · · · , ~xs) is invariant under permutations of the components

of ~xj .

(b)

w
(

(~x1, · · · , ~xs) ◦ (~y1, · · · , ~ys)
)

≤ w(~x1, · · · , ~xs)w(~y1, · · · , ~ys)

for all (~x1, · · · , ~xs), (~y1, · · · , ~ys) ∈ X(s) with supp(~x1, · · · , ~xs) ∩ supp(~y1, · · · , ~ys) 6= ∅.

Example II.4 (Weight Systems)

(i) If κ1, · · · , κs are functions from X to (0,∞] (called weight factors) then

w(~x1, · · · , ~xs) =
s
∏

j=1

n(~xj)
∏

ℓ=1

κj
(

xj,ℓ
)

is a weight system of length s.

(ii) Let d : X ×X → IR≥0 be a metric. The length of a tree T with vertices in X is the

sum of the lengths of all edges of T (where the length of an edge is the distance between

its vertices). For a subset S ⊂ X , denote by τ(S) the length of a shortest tree in X whose

set of vertices contains S. If m ≥ 0, then

w(~x1, · · · , ~xs) = emτ(supp(~x1,···,~xs))

is a weight system of length s.
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(iii) If w1(~x1, · · · , ~xs) and w2(~x1, · · · , ~xs) are two weight systems of length s then

w3(~x1, · · · , ~xs) = w1(~x1, · · · , ~xs)w2(~x1, · · · , ~xs)

is also a weight systems of length s.

Definition II.5 Assume that X is a metric space. Given constants κj ∈ (0,∞] for

j = 1, · · · , s and a mass m ≥ 0 we call

w(~x1, · · · , ~xs) = emτ(supp(~x1,···,~xs))
s
∏

j=1

κ
n(~xj)
j

the weight system with mass m that associates the constant weight factor κj to the field

ψj . It follows from Example II.4 that these are indeed weight systems.

Definition II.6 (Norms)

(i) Let w be a weight system and a a coefficient system of length s. We define the norm

of a with weight w to be

|a|w =
∑

n1,···,ns≥0

max
x∈X

max
1≤j≤s
nj 6=0

max
1≤i≤nj

∑

(~x1,···,~xs)∈Xn1×···×Xns

(~xj)i
=x

w(~x1, · · · , ~xs)
∣

∣a(~x1, · · · , ~xs)
∣

∣

Here (~xj)i is the ith component of the nj–tuple ~xj . The term in the above sum with

n1, · · · , ns = 0 is simply w(−, · · · ,−)
∣

∣a(−, · · · ,−)
∣

∣.

(ii) Let w be a weight system and f(ψ1, · · · , ψs) be a function which is defined and analytic

on a neighbourhood of the origin in IRs|X|. The norm, ‖f‖w of f with weight w is defined(2)

to be |a|w where a is the symmetric coefficient system of f .

Remark II.7 Let a be a (not necessarily symmetric) coefficient system of length s and

f(ψ1, · · · , ψs) =
∑

(~x1,···,~xs)∈X(s)

a(~x1, · · · , ~xs) ψ1(~x1) · · ·ψs(~xs)

Then ‖f‖w ≤ |a|w for any weight system w. We call a a (not necessarily symmetric)

coefficient system for f .

(2) This definition also applies when f depends only on a subset of the variables ψ1, · · · , ψs.
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Remark II.8 Our motivation for the norm of Definition II.6 is the following. As in the

introduction, write

g(ψ) = ln

∫

ef(ψ;φ) dµ(φ)
∫

ef(0;φ) dµ(φ)
=

∑

n≥0

∑

x1,···,xn∈X

b(x1, · · · ,xn) ψ(x1) · · ·ψ(xn)

Then b(x1, · · · ,xn) is an n point connected correlation function. If w(~x) is the weight

system with mass m that associates the constant weight factor 1 to the field ψ as in

Definition II.5, then

max
x∈X

max
1≤i≤n

∑

(x1,···,xn)∈Xn

xi=x

w(x1, · · · ,xn)
∣

∣b(x1, · · · ,xn)
∣

∣

is a norm for the n point connected correlation function which takes into account its

(typical) translation invariance and tests for exponential decay with mass m. The norm

‖g‖w is the sum over n of the norms of all of the n point connected correlation functions.

8



III. The Logarithm

Definition III.1 A weight system of length 2 “gives weight at least ρ to the last field” if

w(~x; ~y) ≥ ρn(~y)w(~x;−)

for all (~x, ~y) ∈ X(2).

Example III.2 Assume that X is a metric space. Given a constant κ ∈ (0,∞] and a

mass m ≥ 0, the weight system with mass m that associates the constant weight factor κ

to the field ψ and the constant weight factor ρ to the field φ gives weight at least ρ to the

last field.

Remark III.3 Let w be a weight system of length 2 that gives weight at least r to the

last field. Recall that r is the radius of support for the measure dµ(φ), defined in (I.3). If

h is an analytic function for which h(0;φ) is constant(1), then

∥

∥

∥

∫

h(ψ;φ) dµ(φ)
∥

∥

∥

w
≤

∥

∥

∥
h(ψ;φ)

∥

∥

∥

w

Theorem III.4 Let w be a weight system of length 2 that gives weight at least 4r to the

last field(2). If f(ψ;φ) obeys ‖f‖w < 1
16
, then there is a real analytic function g(ψ) such

that
∫

ef(ψ;φ) dµ(φ)
∫

ef(0;φ) dµ(φ)
= eg(ψ) (III.1)

and

‖g‖w ≤ ‖f‖w

1−16‖f‖w

Proof: Let a(~x; ~y) be the symmetric coefficient system for f . By factoring ef(ψ;0) out of

the integral in the numerator of (III.1) and ef(0;0) out of the integral in the denominator,

we may assume that f(ψ; 0) = 0 so that a(~x;−) = 0 for all ~x ∈ X(1).

We first introduce some shorthand notation.

(1) To see the need for this restriction, consider h(ψ;φ) =
∑

x∈X
φ(x)2 and w(~x; ~y) = rn(~y). Then

‖
∫

h dµ‖w = |X|
∫

|t|2 dµ0(t) while ‖h‖w = r2, independent of |X|.

(2) There is nothing magical about the choice of “4” in “gives weight at least 4r”. This “4” may be
replaced by any number strictly larger than 1 if one adjusts the final bound appropriately.

9



◦ The bulk of this proof concerns the integral over φ, with ψ just being viewed as a

parameter. For this reason we write

a(~y) =
∑

~x∈X(1)

a(~x; ~y) ψ(~x) (III.2)

With this notation

f(ψ;φ) =
∑

~y∈X(1)

a(~y) φ(~y)

and

ef(ψ;φ) =
∞
∑

ℓ=0

1
ℓ!
f(ψ;φ)ℓ

= 1 +

∞
∑

ℓ=1

1
ℓ!

∑

Z⊂X
Z 6=∅

∑

~y1,···,~yℓ∈X(1)

Z=supp ~y1∪···∪ supp ~yℓ

a(~y1) · · ·a(~yℓ) φ(~y1) · · ·φ(~yℓ)
(III.3)

since a(~y) = 0 unless n(~y) ≥ 1.

In a typical application the coefficient a(~y) has decay properties that tend to keep the

components of ~y (and the ~x components hidden inside a(~y)) close together. We would

like to see similar decay properties in the coefficients of g. In the expansion (III.3), the

coefficient a(~y1) keeps the components of ~y1 close together, · · ·, the coefficient a(~yℓ) keeps

the components of ~yℓ close together. But there is no reason for the components of ~yi to be

close to the components of ~yj , unless, by coincidence, the supports of ~yi and ~yj happen

to intersect. Hence we will keep careful track of when the supports of ~yi and ~yj happen

to intersect. This leads us to the following definitions.

◦ Let X1, · · · , Xℓ be subsets of X . The incidence graph G(X1, · · · , Xℓ) of X1, · · · , Xℓ is

the labelled graph with the set of vertices {1, · · · , ℓ} and edges between i 6= j whenever

Xi∩Xj 6= ∅. For ~y1, · · · , ~yℓ ∈ X(1) we write G(~y1, · · · , ~yℓ) for G(supp ~y1, · · · , supp~yℓ).
◦ A collection ~y1, · · · , ~yn ∈ X(1) is called connected if the incidence graph G(~y1, · · · , ~yn)
is connected. For a subset of Z ⊂ X we denote by C(Z) the set of all ordered n–tuples
(~y1, · · · , ~yn), n ∈ IN, that are connected and for which Z = supp ~y1 ∪ · · · ∪ supp ~yn.

We call such an n–tuple a connected cover of Z.

We now group the vectors ~y1, · · · , ~yℓ appearing in (III.3) into intersecting “clusters”. Given

a subset Z of X and ~y1, · · · , ~yℓ ∈ X(1) with Z = supp ~y1 ∪ · · · ∪ supp ~yℓ, there is a

(unique, up to labelling) decomposition of {1, · · · , ℓ} into pairwise disjoint subsets I1, · · · , In
and a decomposition of Z into pairwise disjoint subsets Z1, · · · , Zn such that, for each

1 ≤ j ≤ n, (~yi, i ∈ Ij) is a connected cover of Zj . This decomposition corresponds to the

10



decomposition of G(~y1, · · · , ~yℓ) into connected components. Therefore

ef = 1+
∞
∑

ℓ=1

1
ℓ!

ℓ
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

pairwise disjoint
nonempty

∑

I1∪···∪In={1,···,ℓ}
I1,···,In pairwise disjoint

∑

~y1,···,~yℓ
(~yi, i∈Ij)∈C(Zj)

a(~y1) · · ·a(~yℓ) φ(~y1) · · ·φ(~yℓ)

(III.4)

The next step is to reduce the combinatorial redundancy in this formula. Fix, for the

moment, pairwise disjoint nonempty subsets Z1, · · · , Zn of X and ℓ ≥ n. Then

∑

I1∪···∪In={1,···,ℓ}
I1,···,In pairwise disjoint

∑

~y1,···,~yℓ
(~yi, i∈Ij)∈C(Zj)

a(~y1) · · ·a(~yℓ) φ(~y1) · · ·φ(~yℓ)

=
∑

k1,···,kn≥1
k1+···+kn=ℓ

∑

I1,···,In⊂{1,···,ℓ}
I1,···,In pairwise disjoint

|Ij |=kj

∑

~y1,···,~yℓ
(~yi, i∈Ij)∈C(Zj)

a(~y1) · · ·a(~yℓ) φ(~y1) · · ·φ(~yℓ)

=
∑

k1,···,kn≥1
k1+···+kn=ℓ

ℓ!
k1!···kn!

∑

(~y1,···,~yk1
)∈C(Z1)

...
(~yℓ−kn+1,···,~yℓ)∈C(Zn)

a(~y1) · · ·a(~yℓ) φ(~y1) · · ·φ(~yℓ)

= ℓ!
∑

k1,···,kn≥1
k1+···+kn=ℓ

n
∏

j=1

{

1
kj !

∑

(~y1,j ,···,~ykj,j
)∈C(Zj)

a(~y1,j) · · ·a(~ykj ,j) φ(~y1,j) · · ·φ(~ykj ,j)
}

Inserting this into (III.4) and exchanging the order of the n and ℓ sums, we have

ef = 1 +

∞
∑

n=1

∞
∑

ℓ=n

1
n!

∑

Z1,···,Zn⊂X

pairwise disjoint
nonempty

∑

k1,···,kn≥1
k1+···+kn=ℓ

n
∏

j=1

{

1
kj !

∑

(~y1,j ,···,~ykj,j
)∈C(Zj)

a(~y1,j) · · ·a(~ykj ,j)

φ(~y1,j) · · ·φ(~ykj ,j)
}

= 1 +

∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

pairwise disjoint
nonempty

∑

k1,···,kn≥1

n
∏

j=1

{

1
kj !

∑

(~y1,j,···,~ykj,j
)∈C(Zj)

a(~y1,j) · · ·a(~ykj ,j)

φ(~y1,j) · · ·φ(~ykj ,j)
}

As the measure µ factorizes with each factor normalized, and the different Zj ’s are disjoint,

∫

n
∏

j=1

{

φ(~y1,j) · · ·φ(~ykj ,j)
}

dµ(φ) =

n
∏

j=1

∫

φ(~y1,j) · · ·φ(~ykj ,j) dµ(φ)

and we have
∫

ef(ψ;φ) dµ(φ) = 1 +
∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

pairwise disjoint

n
∏

j=1

Φ(Zj) (III.5)

11



where, we define, for ∅ 6= Z ⊂ X , the function Φ(Z)(ψ) by

Φ(Z) =

∞
∑

k=1

1
k!

∑

(~y1,···,~yk)∈C(Z)

a(~y1) · · ·a(~yk)
∫

φ(~y1) · · ·φ(~yk) dµ(φ) (III.6)

and Φ(∅) = 0.

We now deal with the “pairwise disjoint” condition in (III.5). If we define

ζ(Z, Z ′) =

{

0 if Z ∩ Z ′ 6= ∅
1 if Z and Z ′ are disjoint

and Gn =
{

{i, j} ⊂ IN2
∣

∣ 1 ≤ i < j ≤ n
}

is the complete graph on {1, · · · , n}, then
∫

ef(ψ;φ) dµ(φ) = 1 +

∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

∏

{i,j}∈Gn

ζ(Zi, Zj)

n
∏

j=1

Φ(Zj)

= 1 +
∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

(

∑

g⊂Gn

∏

{i,j}∈g

(

ζ(Zi, Zj)− 1
)

) n
∏

j=1

Φ(Zj)

by the binomial expansion. Here, whenever a product
∏

{i,j}∈Gn
or

∏

{i,j}∈g is empty, as

is the case for n = 1, it is given the value one. We may identify each g ⊂ Gn with the

labelled graph on the set of vertices {1, · · · , n} that has an edge joining vertex i and vertex

j if and only if {i, j} ∈ g. Denote by Gn the set of all graphs (connected or not) on the set

of vertices {1, · · · , n} that have at most one edge joining each pair of distinct vertices and

no edges joining a vertex to itself. Define

ρ(Z1, · · · , Zn) =







1 if n = 1
∑

g∈Gn

∏

{i,j}∈g

(

ζ(Zi, Zj)− 1
)

if n ≥ 2

In this notation

∫

ef(ψ;φ)dµ(φ) = 1 +
∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

ρ(Z1, · · · , Zn)
n
∏

j=1

Φ(Zj)

Now let Cn ⊂ Gn be the set of all connected graphs on the set of vertices {1, · · · , n} that

have at most one edge joining each pair of distinct vertices and no edges joining a vertex

to itself. Set

ρT (Z1, · · · , Zn) =







1 if n = 1
∑

g∈Cn

∏

{i,j}∈g

(

ζ(Zi, Zj)− 1
)

if n ≥ 2

12



Note, in particular, that ρT (Z1, · · · , Zn) = 0 if G(Z1, · · · , Zn) is not connected (since, in

this case, at least one factor of
∏

{i,j}∈g

(

ζ(Zi, Zj) − 1
)

vanishes for each g ∈ Cn). By a

standard argument (see, for example [Sa, Theorem 2.17]),

ln

∫

ef dµ =
∞
∑

n=1

1
n!

∑

Z1,···,Zn⊂X

ρT (Z1, · · · , Zn)
n
∏

j=1

Φ(Zj) (III.7)

(By “ln” we just mean that the exponential of the right hand side is
∫

ef dµ.)

Let, for any connected graph G ∈ Cn,

t(G) =







1 if n = 1
∑

g∈Cn
g⊂G

(−1)|g| if n > 1

The bound

|t(G)| ≤ #
{

spanning trees in G
}

is due to Rota [Ro]. For a simple proof see [Si, Theorem V.7.A.6]. If G(Z1, · · · , Zn) is

connected, we have that

ρT (Z1, · · · , Zn) =
∑

g∈Cn
g⊂G(Z1,···,Zn)

(−1)|g| = t
(

G(Z1, · · · , Zn)
)

and hence

∣

∣ρT (Z1, · · · , Zn)
∣

∣ ≤ #
{

tree T on {1, · · · , n}
∣

∣ |T | = n− 1, T ⊂ G(Z1, · · · , Zn)
}

(III.8)

To get a, not necessarily symmetric, coefficient system for ln
∫

ef dµ above we first

construct a coefficient system for each Φ(Z). For each (~x, ~y) ∈ X(2), set

ã(~x; ~y) =
∞
∑

k=1

1
k!

∑

(~y1,···,~yk)∈C(supp ~y)

~y1◦···◦~yk=~y

∑

~x1,···,~xk
~x1◦···◦~xk=~x

a(~x1; ~y1) · · ·a(~xk; ~yk)
∫

φ(~y) dµ(φ) (III.9)

if n(~y) ≥ 1 and ã(~x; ~y) = 0 if n(~y) = 0. By (III.6) and (III.2),

Φ(Z)(ψ) =
∑

(~x,~y)∈X(2)

supp ~y=Z

ã(~x; ~y) ψ(~x)

Therefore, by (III.7),

ln

∫

ef dµ =
∑

~x∈X(1)

a′(~x) ψ(~x)

13



where, for ~x ∈ X(1),

a′(~x) =

∞
∑

n=1

1
n!

∑

~x1,···,~xn∈X(1)

~x1◦···◦~xn=~x

∑

~y1,···,~yn∈X(1)

ρT (supp ~y1, · · · , supp ~yn)
n
∏

j=1

ã(~xj ; ~yj) (III.10)

Also

g(ψ) = ln

∫

ef(ψ;φ) dµ(φ)
∫

ef(0;φ) dµ(φ)
=

∑

~x∈X(1)

~x 6=−

a′(~x) ψ(~x)

so that a′, excluding the constant term a′(−), is a, not necessarily symmetric, coefficient

system for g. By Remark II.7,

‖g‖w ≤ |a′|w (III.11)

We now bound the coefficient system a′(~x) for g(ψ). Equation (III.10) expresses the

output coefficients a′(~x) in terms of the intermediate coefficients ã(~x; ~y). Equation (III.9),

in turn, expresses the intermediate coefficients ã(~x; ~y) in terms of the input coefficients

a(~x; ~y). These formulae lead to the following bounds.

For each nontrivial ~x ∈ X(1), by (III.10) and (III.8),

|a′(~x)| ≤
∞
∑

n=1

1
n!

∑

~x1,···,~xn∈X(1)

~x1◦···◦~xn=~x

∑

~y1,···,~yn∈X(1)

∑

T spanning tree
for G(~y1,···,~yn)

n
∏

j=1

∣

∣ã(~xj ; ~yj)
∣

∣

=
∞
∑

n=1

1
n!

∑

T labelled tree with
vertices 1,···,n

∑

~x1,···,~xn∈X(1)

~x1◦···◦~xn=~x

∑

~y∈X(1)

∑

~y1,···,~yn∈X(1)

~y1◦···◦~yn=~y

T⊂G(~y1,···,~yn)

∣

∣ã(~x1; ~y1)
∣

∣ · · ·
∣

∣ã(~xn; ~yn)
∣

∣

=
∞
∑

n=1

1
n!

∑

T labelled tree with
vertices 1,···,n

∑

~y∈X(1)

|ã|T (~x; ~y)

(III.12)

where

|ã|T (~x; ~y) =
∑

~y1,···,~yn∈X(1)

~y=~y1◦···◦~yn
T⊂G(~y1,···,~yn)

∑

~x1,···,~xn∈X(1)

~x=~x1◦···◦~xn

|ã(~x1; ~y1)| · · · |ã(~xn; ~yn)|

There is a similar bound for ã(~x; ~y). Since, for every (~y1, · · · , ~yk) contributing to

(III.9), G(~y1, · · · , ~yk) is connected and hence contains at least one tree, and since the

14



measure dµ0

(

φ(x)
)

is normalized and supported on [−r, r], we have

|ã(~x; ~y)| ≤
∞
∑

k=1

1
k!

∑

T labelled tree with
vertices 1,···,k

∑

~y1,···,~yk∈X(1)

~y=~y1◦···◦~yk
T⊂G(~y1,···,~yk)

∑

~x1,···,~xk∈X(1)

~x=~x1◦···◦~xk

|a(~x1; ~y1)| · · · |a(~xk; ~yk)|rn(~y)

=
∞
∑

k=1

1
k!

∑

T labelled tree with
vertices 1,···,k

rn(~y)|a|T (~x; ~y)

(III.13)

where

|a|T (~x; ~y) =
∑

~y1,···,~yk∈X(1)

~y=~y1◦···◦~yk
T⊂G(~y1,···,~yk)

∑

~x1,···,~xn∈X(1)

~x=~x1◦···◦~xk

|a(~x1; ~y1)| · · · |a(~xn; ~yk)|

To complete the proof of Theorem III.4, we use two lemmata. The first, Lemma III.5,

below, provides bounds on |ã|T in terms of ã and on |a|T in terms of a. The second, Lemma

III.6, below, bounds the sums that result from the application of the first lemma.

We introduce, for each σ > 0, the auxiliary weight system

wσ(~x; ~y) = w(~x; ~y)
(

σ
4r

)n(~y)

By parts (i) and (iii) of Example II.4, wσ is indeed a weight system. Clearly w4r = w.

Furthermore

w(~x;−) ≤ w1(~x; ~y) (III.14)

for all (~x, ~y) ∈ X(2), by Definition III.1, with ρ = 4r.

By (III.12), (III.14) and Lemma III.5, with ω = w1 and ω′ = w2,

∣

∣a′ − a′(−)
∣

∣

w
≤

∞
∑

n=1

1
n!

∑

T labelled tree with
vertices 1,···,n

∣

∣ |ã|T
∣

∣

w1

≤
∞
∑

n=1

1
n!

∑

d1,···,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,···,dn

∣

∣ |ã|T
∣

∣

w1

≤
∞
∑

n=1

1
n!

∑

d1,···,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,···,dn

d1! · · ·dn!
∣

∣|ã|
∣

∣

n

w2

Now apply Lemma III.6 with ε =
∣

∣|ã|
∣

∣

w2
= |ã|w2

and ν = 1 to get

|a′|w ≤ |ã|w2

1−8|ã|w2
(III.15)
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By construction,
∣

∣ rn(~y)|a|T (~x; ~y)
∣

∣

w2
=

∣

∣ |a|T
∣

∣

w2r
. Hence, by (III.13) and Lemma

III.5, with ω = w2r, followed by Lemma III.6,

|ã|w2
≤

∞
∑

k=1

1
k!

∑

T labelled tree with
vertices 1,···,k

∣

∣ |a|T
∣

∣

w2r

≤
∞
∑

k=1

1
k!

∑

d1,···,dk
d1+···+dk=2(k−1)

∑

T labelled tree
with coordination
numbers d1,···,dk

d1! · · ·dk! |a|kw4r

≤ |a|w
1−8|a|w

(III.16)

since w4r = w.

Combining (III.11), (III.15) and (III.16) yields

‖g‖w ≤ |a|w
1−16|a|w

= ‖f‖w

1−16‖f‖w

Lemma III.5 Let ω be an arbitrary weight system of length 2 and define the weight

system ω′ by

ω′(~x; ~y) = 2n(~y)ω(~x; ~y)

Let T be a labelled tree with vertices 1, · · · , n and coordination numbers d1, · · · , dn. Let b

be any (not necessarily symmetric) coefficient system of length 2 with b(−;−) = 0. We

define a new coefficient system bT by

bT (~x; ~y) =
∑

~y1,···,~yn∈X(1)

~y=~y1◦···◦~yn
T⊂G(~y1,···,~yn)

∑

~x1,···,~xn∈X(1)

~x=~x1◦···◦~xn

b(~x1; ~y1) · · · b(~xn; ~yn)

Then
∣

∣bT
∣

∣

ω
≤ d1! · · ·dn! |b|nω′

Proof: For any pair ~N = (N1, N2) of nonnegative integers, let b ~N (~x, ~y) denote the

restriction of b
(

~x; ~y
)

to
(

n(~x), n(~y)
)

= ~N . That is,

b ~N
(

~x; ~y
)

=

{

b
(

~x; ~y
)

if n(~x) = N1, n(~y) = N2

0 otherwise

Then

bT =
∑

~N(1),···, ~N(n)∈IN2
0

b ~N(1),···, ~N(n)
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where

b ~N(1),···, ~N(n)(~x, ~y) =
∑

~y1,···,~yn∈X(1)

~y=~y1◦···◦~yn
T⊂G(~y1,···,~yn)

∑

~x1,···,~xn∈X(1)

~x=~x1◦···◦~xn

b ~N(1)(~x1; ~y1) · · · b ~N(n)(~xn; ~yn)

Since
∣

∣bT
∣

∣

ω
≤

∑

~N(1),···, ~N(n)∈IN2
0

∣

∣ b ~N(1),···, ~N(n)

∣

∣

ω

and

|b|ω′ =
∑

~N∈IN2
0

∣

∣b ~N

∣

∣

ω′

it suffices to prove that, for any ~N (1), · · · , ~N (n) ∈ IN2
0,

∣

∣ b ~N(1),···, ~N(n)

∣

∣

ω
≤ d1! · · ·dn!

n
∏

j=1

∣

∣b ~N(j)

∣

∣

ω′

Furthermore, since T is connected, part (b) of Definition II.3 ensures that

ω(~x; ~y) ≤
n
∏

j=1

ω
(

~xj ; ~yj
)

for all ~x1, · · · , ~xn ∈ X(1) and ~y1, · · · , ~yn ∈ X(1) such that ~x = ~x1 ◦ · · ·◦~xn, ~y = ~y1 ◦ · · ·◦~yn
and T ⊂ G(~y1, · · · , ~yn). So it suffices to consider ω = 1.

Fix any ~N (1), · · · , ~N (n) ∈ IN2
0. Quickly review the definition (Definition II.6) of

∣

∣ b ~N(1),···, ~N(n)

∣

∣

ω
. Fix any x ∈ X and select one component of

(~x, ~y) =
(

~x1 ◦ · · · ◦ ~xn, ~y1 ◦ · · · ◦ ~yn
)

to be anchored at x. By permuting {1, · · · , n}, we may assume that the one component is

in (~x1, ~y1). For notational simplicity, we consider the case that the component is the first

component ~x1,1 of ~x1. The other cases are virtually identical. Thus it suffices to prove

that
∑

~y1,···,~yn∈X(1)

T⊂G(~y1,···,~yn)

∑

~x1,···,~xn∈X(1)

~x1,1=x

|b ~N(1)(~x1; ~y1)| · · · |b ~N(n)(~xn; ~yn)| (III.17)

is bounded by d1! · · ·dn!
∏n
j=1

∣

∣b ~N(j)

∣

∣

ω′

∣

∣

ω=1
.

View 1 as the root of T . Then the set of vertices of T is endowed with a natural

partial ordering under which 1 is the smallest vertex. For each vertex 2 ≤ j ≤ n, denote
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by π(j) the predecessor vertex of j under this partial ordering. For example, if T is the

tree in the figure

6

7

1

3 4 5

2

then π(7) = π(3) = π(4) = 2, π(2) = π(5) = 6 and π(6) = 1. The condition that

T ⊂ G(~y1, · · · , ~yn) ensures that, for each 2 ≤ j ≤ n, the support of ~yj intersects the

support of ~yπ(j), so that at least one of the n(~yj) components of ~yj takes the same value

(in X) as some component of ~yπ(j). Note that n(~yj) = N
(j)
2 and in particular is fixed by

~N (j). Denote it nj. So

(III.17) ≤
n
∏

j=2

[

njnπ(j))
]

max
1≤mj≤nj

1≤pj≤nπ(j)
for all 2≤j≤n

∑

~y1,···,~yn∈X(1)

~yj,mj
=~yπ(j),pj

for all 2≤j≤n

∑

~x1,···,~xn∈X(1)

~x1,1=x

n
∏

j=1

|b ~N(j)(~xj ; ~yj)|

Since
n
∏

j=2

[

njnπ(j))
]

=

n
∏

j=1

n
dj
j ≤

n
∏

j=1

[

dj! 2
nj
]

it suffices to prove that

∑

~y1,···,~yn∈X(1)

~yj,mj
=~yπ(j),pj

for all 2≤j≤n

∑

~x1,···,~xn∈X(1)

~x1,1=x

n
∏

j=1

2n(~yj)|b ~N(j)(~xj ; ~yj)| ≤
n
∏

j=1

∣

∣b ~N(j)

∣

∣

ω′

∣

∣

∣

ω=1

for all choices of (mj , pj)2≤j≤n, satisfying 1 ≤ mj ≤ n(~yj) and 1 ≤ pj ≤ n(~yπ(j)). But

this is done easily by iteratively applying

∑

~yj∈X(1)

~yj,mj
=~yπ(j),pj

∑

~xj∈X(1)

2n(~yj)|b ~N(j)(~xj ; ~yj)| ≤
∣

∣b ~N(j)

∣

∣

ω′

∣

∣

ω=1

starting with the largest j’s, in the partial ordering of T , and ending with j = 1. (For

j = 1, substitute ~x1,1 = x for ~yj,mj
= ~yπ(j),pj .)

Lemma III.6 Let 0 < ε < 1
8 and ν ∈ IN. Then

∞
∑

n=ν

1
(n−1)!

∑

d1,···,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,···,dn

d1! · · ·dn! εn ≤ 1
8
(8ε)ν

1−8ε
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Proof: First suppose that ν ≥ 2. By the Cayley formula (see, for example [Ri, Theorem

I.4.1]), the number of labelled trees on n ≥ 2 vertices with specified coordination numbers

(d1, d2, · · · , dn) is
(n−2)!

∏

n

j=1
(dj−1)!

The number of possible choices of coordination numbers (d1, d2, · · · , dn) ∈ INn subject to

the constraint d1 + d2 + · · ·+ dn = 2(n− 1) is
(

2(n−1)−1
n−1

)

=
(

2n−3
n−1

)

≤ 22n−3. Therefore

∞
∑

n=ν

1
(n−1)!

∑

d1,···,dn
d1+···+dn=2(n−1)

∑

T labelled tree
with coordination
numbers d1,···,dn

d1! · · ·dn! εn ≤
∞
∑

n=ν

1
n−1

∑

d1,···,dn
d1+···+dn=2(n−1)

d1 · · ·dn εn

≤
∞
∑

n=ν

1
n−1

22n−3 2nεn ≤ 1
8
(8ε)ν

1−8ε

For n = 1, d1 = 0 and the number of trees is 1, so the n = 1 term is ε. So the full sum for

ν = 1 is bounded by ε+ 1
8
(8ε)2

1−8ε = ε
1−8ε .
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IV. Linear Changes of Variables and Substitutions

In this section, we consider the effect of linear changes of variables on the norms

of Definition II.6 with the weight systems of Definition II.5. Such changes of variables

arise naturally during the course of the execution of a Wilson style renormalization group

construction. For example, if φc is a critical point of the action An−1(ψ, φ), it is natural

to use the translation φ = φ̃ + φc; and the change of variables φ̃ =
√
C φ can be used to

diagonalize the quadratic form
∑

x,y φ(x)C(x,y)φ(y).

We fix any m ≥ 0 and set, for a linear map J from IRX to IRX with kernel J(x,y),

|||J |||m = max
{

sup
x∈X

∑

y∈X

emd(x,y)|J(x,y)| , sup
y∈X

∑

x∈X

emd(x,y)|J(x,y)|
}

For κ > 0, we denote by wκ the weight system of length one with mass m that associates

the constant weight factor κ to the field ψ. That is

wκ(x1, · · · ,xn) = emτ({x1,···,xn})κn

Similarly, for κ, λ > 0, we denote by wκ,λ the weight system of length two with mass m

that associates the constant weight factor κ to the field ψ and the constant weight factor

λ to the field φ.

To simplify notation, we write ‖g(ψ)‖κ and ‖f(ψ, φ)‖κ,λ for ‖g(ψ)‖wκ
and ‖f(ψ, φ)‖wκ,λ

,

respectively.

Proposition IV.1 Let g be an analytic function on a neighbourhood of the origin in IRX .

(i) Let J be an operator on IRX with kernel J(x,y). Define g̃ by

g̃(ψ) = g(Jψ)

Let κ > 0 and set κ′ = κ|||J |||m. Then ‖g̃‖κ ≤ ‖g‖κ′.

(ii) Define f by

f(ψ;φ) = g(ψ + φ)

Then ‖f‖κ,λ = ‖g‖κ+λ.

Proof: (i) Let a(~x) be a symmetric coefficient system for g. Define, for each n ≥ 0,

ã(x1, · · · ,xn) =
∑

y1,···,yn∈X

a(y1, . . . ,yn)
n
∏

ℓ=1

J(yℓ,xℓ)
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Then ã(~x) is a symmetric coefficient system for g̃. Since

τ({x1, · · · ,xn}) ≤ τ({y1, · · · ,yn}) +
n
∑

ℓ=1

d(yℓ,xℓ)

we have

emτ({x1,···,xn}) ≤ emτ({y1,···,yn})
n
∏

ℓ=1

emd(yℓ,xℓ)

and hence

wκ(x1, · · · ,xn)
∣

∣ã(x1, · · · ,xn)
∣

∣

≤
∑

y1,···,yn∈X

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣

n
∏

ℓ=1

[

κ
κ′ e

md(yℓ,xℓ)
∣

∣J(yℓ,xℓ)
∣

∣

]

We are to bound

‖g̃‖κ =
∑

n≥0

max
x∈X

max
1≤j≤n

∑

x1,···,xn∈Xn

xj=x

wκ(x1, · · · ,xn)
∣

∣ã(x1, · · · ,xn)
∣

∣

≤
∑

n≥0

max
x∈X

max
1≤j≤n

∑

x1,···,xn∈X
xj=x

∑

y1,···,yn∈X

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣

n
∏

ℓ=1

[

κ
κ′ e

md(yℓ,xℓ)
∣

∣J(yℓ,xℓ)
∣

∣

]

(IV.1)

Fix any n ≥ 0, x ∈ X and 1 ≤ j ≤ n. By definition, for each ℓ 6= j and yℓ ∈ X

∑

xℓ∈X

κ
κ′ e

md(yℓ,xℓ)J(yℓ,xℓ) =
∑

xℓ∈X

1
|||J|||m

emd(yℓ,xℓ)J(yℓ,xℓ) ≤ 1

Therefore

∑

x1,···,xn∈X
xj=x

∑

y1,···,yn∈X

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣

n
∏

ℓ=1

[

κ
κ′ e

md(yℓ,xℓ)
∣

∣J(yℓ,xℓ)
∣

∣

]

≤
∑

y∈X

κ
κ′ e

md(y,x)J(y,x)
∑

y1,···,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣

≤
∑

y∈X

κ
κ′ e

md(y,x)J(y,x) max
y∈X

∑

y1,···,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣

≤ max
y∈X

∑

y1,···,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣
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since, once again,
∑

y∈X
κ
κ′ e

md(y,x)J(y,x) =
∑

y∈X
1

|||J|||m
emd(y,x)J(y,x) ≤ 1. Conse-

quently, (IV.1) is bounded by

∑

n≥0

max
1≤j≤n

max
y∈X

∑

y1,···,yn∈X
yj=y

wκ′(y1, · · · ,yn)
∣

∣a(y1, · · · ,yn)
∣

∣ = ‖g‖κ′

This proves part (i) of the Proposition.

(ii) Let a(~u) be a symmetric coefficient system for g. Since a is invariant under permutation

of its ~u components,

g(ψ + φ) =
∑

~u∈X(1)

a(~u) (ψ + φ)(~u) =
∑

~x,~y∈X(1)

a(~x ◦ ~y)
(

n(~x)+n(~y)
n(~y)

)

ψ(~x)φ(~y)

so that

a+(~x; ~y) = a(~x ◦ ~y)
(

n(~x)+n(~y)
n(~y)

)

is a symmetric coefficient system for f . We have

‖f‖κ,λ =
∑

k,ℓ≥0

max
p∈X

max
1≤i≤k+ℓ

∑

~x∈Xk, ~y∈Xℓ

(~x,~y)i=p

wκ,λ(~x; ~y)
∣

∣a+(~x; ~y)
∣

∣

=
∑

k,ℓ≥0

max
p∈X

max
1≤i≤k+ℓ

∑

~x∈Xk, ~y∈Xℓ

(~x,~y)i=p

emτ(supp(~x,~y))κkλℓ
(

k+ℓ
ℓ

)
∣

∣a(~x ◦ ~y)
∣

∣

=
∑

k,ℓ≥0

(

k+ℓ
ℓ

)

κkλℓmax
p∈X

max
1≤i≤k+ℓ

∑

~x∈Xk, ~y∈Xℓ

(~x,~y)i=p

emτ(supp(~x,~y))
∣

∣a(~x ◦ ~y)
∣

∣

=
∑

k,ℓ≥0

(

k+ℓ
ℓ

)

κkλℓmax
p∈X

max
1≤i≤k+ℓ

∑

~u∈Xk+ℓ

~ui=p

emτ(supp(~u))
∣

∣a(~u)
∣

∣

=
∑

n≥0

(κ+ λ)nmax
p∈X

max
1≤i≤n

∑

~u∈Xn

~ui=p

emτ(supp(~u))
∣

∣a(~u)
∣

∣

= ‖g‖κ+λ
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[BFKT2] Tadeusz Balaban, Joel Feldman, Horst Knörrer and Eugene Trubowitz, A Functional

Integral Representation for Many Boson Systems. II: Correlation Functions, to appear

in the Annales Henri Poincaré.
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