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We attempt to give a pedagogical introduction to perturbative renormalization.
Our approach is to first describe, following Linstedt and Poincaré, the renormalization of
formal perturbation expansions for quasi-periodic orbits in Hamiltonian mechanics. We then
discuss, following [FT1,FT2], the renormalization of the formal ground state energy density
of a many Fermion system. The construction of formal quasi-periodic orbits is carried out in
detail to provide a relatively simple model for the considerably more involved, and perhaps
less familiar, perturbative analysis of a field theory.

As we shall see, quasi-periodic orbits and many Fermion systems have a number
of important features in common. In particular, as Poincaré observed in the classical case
and [FT1,FT2] pointed out in the latter, the formal expansions considered here both contain

divergent subseries.

I. Quasi-Periodic Orbits
Let T¢ = R%/27Z% be the d-dimensional torus and B C R? a small ball centered

at the origin. Fix w € R? and consider the Hamiltonian
<w,y> (1.1)

on the phase space T? x B . The corresponding equations of motion are

dz
— =W
dt
1.2
dy (1.2)
dt
For each initial point (xg, ) € T¢ x B there is a solution
(wt +xp,0), —00<t< 00 (1.3)(z0,a)

of (I.2). We shall assume that the frequency vector w satisfies the strongly nonresonant
Diophantine condition

T > d-1 (1.4)

for all k # 0 in Z% . In this case, (1.3)(z,,o) Winds densely around T% x {a} .
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Consider the perturbed Hamiltonian

<w,y > +te (P(:c) + % <y,Q(z)y > +R(z, y)) (1.5)

on T¢ x B. Here, P, Q =Q"7 and R are real analytic, and
R(z,y) = O(|yI®) - (1.6)

The corresponding equations of motion are

dx

— =w+e(Qx)y+ Ry)
dt
dy 1 (1.7)
- = € Pz(aj) +5 < yan(x)y > +R,
dt 2
Recall that the composition
Flat)= 3 frjer<het
kezd
where f € C° (Td) is called a quasi-periodic function of t with frequency module
{<kw>|keZ}.
The Fourier coefficient f (k), k € Z%, is defined by
~ 1 .
k) = Ticke> 1.8
Fh) = o [, f@e (19)
One attempts to construct a formal, quasi-periodic solution to (I.7) of the form
(wt, 0) + (u(wt, e), v(wt,€)) (1.9a)
u(x,e) ~ Z ui(w)e?
721 | (1.95)
v(x,€) ~ Z vj(x)e’
Jjz1
where uj,v;,j > 1, are R valued real analytic functions on T4
Substituting, we obtain
d
w + E“(Wt) =w+eQ (wt + u(wt)) v(wt) + eRy (Wt + u(wt), v(wt))
d
Zuwt) = —eP, (Wt + u(wt)) - 5 (0(@t), Qu (t + u(wt)) v(wt)) (1.10)

—eRy (wt + u(wt), v(wt))



Since the trajectory wt winds densely around T¢, it follows that (1.9) is a solution of (L.7) if

and only if (u(z),v(x)) is a solution of the first order, nonlinear partial differential equation

(“w“’> = eI (z,u,v) (I.11a)

Vpw
where
Q(z +u)v+ Ry(x + u,v)
I _ Y ) I1.11b
(@ u,0) (—Pa:(x—l-U)—%<U7Qx($+u)v>_Rw(x+“’”) o
and 1 1 d 1.
u$1 ... u$d W1 Zi:l umi Wy
Upw = =
d
ugl 'u,gd Wq D im1 ng Wi

is the directional derivative of # in the direction w .

Matching powers of € in (I.11), one finds

Urgzw =0 Uggw = Q(x)v1(x)

V1w = —Py(x) Vogw = — Py (x)us ()
In general, if u;,v;, 4 < j exist and are real analytic R? valued functions on T¢, then
Ujpw = 1;(T) Vjzw = 5;(x) (1.125)

where 7;, s;, j > 1, are also real analytic R? valued functions on T? recursively constructed
from u;, v, ¢ < j and P, Q, R.

Suppose u;, v;, © < j exist and are real analytic. Then, formally solving (1.12j), one

obtains
u(x) — Z TAJ(k) ei<k,z>
J i<kyw>
hezd (1.13)
vj(z) = Z 3 (k) ot <k.>
SRS i<kw>
keZd ’
By (1.4),

| —i < k,w>""| < const k|

for |k| > 0. Observe that

|75(k)| 5 18;(K)| < const ¢ —const|k|
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since 7, s; are real analytic on T<. Therefore, the series

3 7 (k) pi<k.z>
150 1< kyw >

T 8i(k)  icka>
150 1< kyw >

converge absolutely to real analytic functions. In other words, the large momentum contri-
bution to (7.137) is well defined.

On the other hand, the « free propagator” —i < k,w >~1, k € Z% has a “linear”
singularity at & = 0. Consequently, u;, v; are well defined if and only if 7#;(0) = [r;] =

0, 5;(0) =[s;] =0, where
1
[f]:W[rd f(z) da.

In particular, uq, vy are well defined since [P,] = 0. But, us is undefined unless [Q(z)vi(x)] =
0 . We may say that each order of perturbation theory is “ultraviolet finite” , but potentially
“infrared divergent”. Ultraviolet refers to large momenta, or equivalently, small distances.
Infrared refers to small momenta, or large distances.

The “infrared” divergent terms

) — oo, - [si]  _
1< 0,w > 1< 0,w >

can be removed by introducing counterterms p;, o; € R¢, j > 1. Set

ple) ~>  piel

j=21

o(e) ~ Z ojel

j21

(I.14)

and consider the modified equation

(:jzzj) =l (z,u,v) — (g) (1.15)

for u, v, p,and o . Equation (I.15) in contrast to (I.11) always has a unique (formal) solution
u,v,p,0 with [u] =0 and [v] =0 . In fact, proceeding by induction, if w;,v;, p;, 04, © < j

exist and wu;,v; are real analytic, then there are real analytic R? valued functions Tj,S8; on
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T? and vectors pj, 0j € R? recursively constructed from wu;,v;, p;, 04, i < j and P,Q, R
such that

Ujzw = 1i(z) — pj Vjgw = 5;(x) — 0 (1.16)

It follows directly from the discussion of (I1.12j) above that

’U,(.’I,',é‘) ~ Z Z ﬂei<k,z> el

51 \|k>o 1< kyw>
8i(k) i<k :
v(z,e) ~ —J e'<r> ) gl
; |k|z>:0 1< kyw> (1.17)
ple) ~ > [rjlé’
i>1
a(e) ~ ) [si]é’
i>1

is the unique, well defined formal power series solution of (I.15) with [u] = 0 and [v] = 0.
The remedy of the last paragraph for infrared divergence is on the face of it unac-
ceptable, because a solution of (I.15) does not necessarily yield a quasi-periodic solution of
(L.7) of the form (I.9). However, the free Hamiltonian < w,y > generates the 2d-parameter

family of orbits

(wt + zg, ) , —00 <t < 00, (1.3) (20,0)
(zg,a) € T x B . We have expanded around (wt,0), —oco < t < 0o keeping the initial
position zp and action « fixed at 0. We will now expand around (/.3)(,,) and renormalize
the physical parameters o and « to compensate for the additional term — Z in (I.15).

That is, zo and « must be chosen to depend on ¢ in a specific way.

Reviewing the discussion leading up to (I.11) and then to (I.15) one sees that
(wt + o, @) + (u(wt + zg, €), v(wt + g, €)) (1.18)
is a solution of (I.7) if and only if (u(x),v(x)) is a solution of

(““”“’) = el (z,u,v + a) (1.19)

Vg

and furthermore that

<u$w):5I(x,u,v+a)—<g> (1.20)

Vg
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has a unique formal power series solution (u,v, p, o),

u(z,a,e) ~ Z Z 7rj(k,a) ei<k.z> | oJ

S |k|>0i <k w>
Sj(k,) -
v(z,a,€) ~ Z Z R =
is1 \jeso’ < k,w > (1.21),
plae) ~ Y [rj(a)]e
jz1
o(a,e) ~ > [si(a)]el
i>1

with [u] = 0, [v] = 0, depending real analytically on « € B. Observe that zy does not appear
in (I.19) or (I.20). By definition, (I.11) is renormalizable if it is possible to solve for o as a

function (formal power series) of € so that
p(a(e),e) =0 o(a(e),e) =0. (1.22)

Clearly,
(wt + zo, a(e)) + (u(wt + o, a(e), €), v(wt + xo, a(€), €))

is a formal quasi-periodic solution to (I.7) when (I.11) is renormalizable.

Matching powers of € in (I1.20), one finds
uzw =11(2, @) — p1 = Q(z)a+ Ry(z, ) — p1 .
As before, [ui,w] =0 implies p; = [Qa+ O (o) with the result that
p=¢c[Qa + O(e%)+0 (c®) .

Suppose
det [Q] #0 . (1.23)

Then, by the formal implicit function theorem, there is a unique formal power series

ae) ~ Z e’ (1.24)

j21
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such that p (a(e),e) = 0. What about o (a(e),e) ?

There are 2d counterterms p, o but only d parameters . At first sight, one
would expect that it is not possible to choose a (depending on ¢) so that p, and o are
both 0. However, Poincaré showed that o (a(e),e) automatically vanishes when «(e) is the
formal power series (I.24). The idea is to conjugate (I.5) by a formal symplectic map to a
Hamiltonian

<w,a+y>+g(y,a¢) (1.25)

that only depends on y. The counterterm o generated by (1.25) is clearly zero, since

Recall that
F (ac,y)—>(x+f1(x,y,€), y+f2(37,y58))

fi(xayag):Zfi,j(xay)Ej ) 1= 172
321
is a formal symplectic map on T? x B when fij is real analytic on T? x B;, B; a small ball

centered at the origin in R¢, and the 2d x 2d Jacobian satisfies

<1+f1m fly > ( 0 1) <1+f1:1; fly )T:( 0 1)
foe 1+ fay )\ -1 0 fox 14 fay -1 0

order by order in & . Poincaré ([P], [A1l]) showed that there is a unique formal symplectic
map F with [f;(-,y,a)] =0, i=1,2, depending analytically on o € B and a unique formal

power series

9y, ne) = gi(y, )¢

j=1
also depending analytically on « such that
<waty+fo>+eP+ fi)+ 5 < (@+y+f), Q@+ f)a+y+fo) >
+eR(z + fr,a+y+ f2)
=< w,a+y>+g9(y,a,e). (1.26)

It follows from (1.26) that a formal quasi-periodic orbit for < w,a+y > +g(y, a,¢)

can be mapped by F to a formal quasi-periodic orbit for (I.5). But, as remarked above,
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o disappears when the Hamiltonian depends on y alone. The construction of solutions
(I.18) may be completed in this way. Nevertheless, it is instructive to directly verify that o
vanishes.

Differentiate (I.26) and set y = 0 to obtain

f2a:Tw 1+fla:T f2a:T Vm 0 _
<f2yTw> +€( flyT 1+f2yT> (vy> (a:+f1,a+f2)¢_ (gy(078)> =0 (1.27)
where
b=Pa)+ 5 <y, Q)y > +R(z,y¢)
and d .
f21$1 T féiih w1 Zi:l f%wl Wi
meTw = . = :
lezd Tt -'gd Wd Zf:l szd Wy
Multiplication on the left by
<1+f1:c fly )( 0 1):< _fly 1+f1:c>
f2:c 1+f2y -1 0 _1_f2y wa
yields
(Feioe) =t @awo.as mwon- (T LTGAGY) a2
because

( _fly 1+f1$) <f2$Tw> _ ((_flyf2wT+(1+f1w)f2yT)w>
—-1- f2y f2$ f2yTw ((_1 - f2y)f2wT + f2;cf2yT)w

— < _fl.’l:(xa 0)(4))
_f2.’1: (:Ea O)LU
since F' is symplectic.

At order ¢, (1.28) implies g1,(0) = [Q]a+ O(a?) , since

fizw = Q(x)a+ Ry(z, ) — g14(0) .
Once again condition (I1.23) and the formal implicit function theorem yield a unique formal

power series a(e) with g,(0, a(e),e) = 0. It follows that for this choice of «

(f1(2,0), fa(z,0), 0, 0) (1.29)
is the unique solution (I.21),, (u, v, p, o), of (1.20) with [u] = [f1(z,0)] =0, [v] = [f2(x,0)] =

0 since

pla(e),e) = (1 + f12(2,0))gy(0) =0 and o(ale),e) = f2(,0)g,(0) = 0.

Therefore, condition (I.23) implies that (I.11) is renormalizable.
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We have

Theorem 1 (Linstedt, Poincaré)
Let P(z) and R(z,y) = O (|y|?) be real analytic functions on T? and T¢x B . Let

Q = Q7 be areal analytic, d x d symmetric matrix valued function on T¢ satisfying

det (/T Qs () dx) 20,

Suppose, w € R satisfies the Diophantine condition

const

T > d-—1
k|

| <w,k>|>
forall k#0 in Z?. Then, for each zy in T?¢

(wt + zg, a(e)) + (u(wt + zg, a(e), €), v(wt + g, a(e),€))

u(zx) ~ Z ui(z, a)e’

j21

v(z) ~ Z v; (T, a)e!
j21

a(e) ~ Z e’
321

is a formal quasi-periodic solution of the Hamiltonian system

dx

s =w+e(Qx)y+ Ry)

dy_ _ 1

E - € (Pm(x) —l_ 2 < vaw(x)y > +Rw>

where wu;,v;,7 > 1 , are the R? valued real analytic functions on T? x B constructed in

(1.21)4 and «(e) is given by (I1.24).

To make Theorem 1 more concrete we elaborate on the form of wu;,v;,57 > 1. To
(1) =)
v o
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Q(w;rU)(Ha) + Ry(z +u,0+ ) ) (1.30)

Expanding,
I(x,z) = Zn(z)(2) (1.31)

where

ti=--=t, =0

1 o -~
() (Y1, - yn) = il WI (l‘,z tz‘%’)
! ... Oty, p

for y; e R*, i=1,---,n, and
In(2)(2) = In(z)(z, -+, 2)

forall n > 0.
Inverting the directional derivative < w,V, > on the complement of the constant

functions, (I.20) may be rewritten in the form
2(z) = <w,Vy >t (eI (, 2(x)) — K)
ko= [e1(:2)] (1.32)

= @/ﬂ eZ (z,2(x)) dx .

Substituting the right hand side of (I1.31), the last equation becomes

2@) = ) <w, Ve > (eTa(@)(2(2)) — [T () (2)])

- (1.33)
K= Y ETOG)-

n >0

Using the multilinearity of Z,(z)(y1,---,¥yn) one sees that the Fourier coefficient

o [, Ta@)ela)) i<k i

k1 eZd knEZd

1 2 7 1,2 ~ i T _ z
= (2m)¢ /rd Zn(z) ( Z (k) ef<koe> L Z 3(ky) €' <kn: >) e—i<ka> gd.
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e - (1.34)
= Y Talb—hi— = k) Gk, (k)
ki, ,kn,€EZY
where
I’n(k)(yl,'-.7yn) = W /I‘d In(x)(yl,___,yn) e i<k,x> ddx )

Observe that fn(k)(yl, . Yn), n >0, is an R2? valued multilinear form on (de)n

and, in particular, that Zo(k) is a vector. Combining (I.33) and (L.34), we obtain

ez<k,m> .

Z(:U) = ¢ Z Z Z mIn(k_kl_"'_kn)(é(kl)""’é(kn))

n >0 kezd ki, ,kn€ZI
k0

1

— € Z Z i<k1+---+kn+1,w>

n >0 ki, kpy€Z?
k1+---+kp41#0

(1.35)
X T (kns1) (3(k1), -+, 2(kn)) e <hatothnsse>

and

k= ¢ Ta(—k1— - — kp)(B(k1), -+, 2(kn)) . (1.36)

The formal power series solution to (I1.20) is generated by iterating (I.35) starting

with z = 0. The first iterate is

1 ~ ‘
—————— Ty(k1) €<F07>
c Z 1< ki,w> O( 1)6

k€zd
kq1#0
The second
1 n 1
Z entl z Z ‘ H '
n>0 A A 1<ki+-Fkpy1,w > i1 1< ki, w >

k170 kn#0  ky4---dkpy 170

X i—n(kn—l—l)(i-o(kl)a e 7i—0(kn)) ei<k1+m+kn+1’z> .

At the same time, (I1.36) yields the expansion for & .
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As a simple example, observe that for every triple mq,mg, m3 € Z% satisfying
mi 750 m1+m27é0 m1+mg+m37é0

repeated iteration of (I1.35) produces the term
3

1 ~ ~ ~ .
T T T 1<mi+ma+msz,r> 1.37
II o mos ) (Bma)@oim)) e (1.37)

s=1

8

of order €2 . A more complicated example of order ¥ is the product of the rows

1 1 1 1 1
<ML, w> 1< Mo, w> 1< Mg, w > 1< My, w > &< Mg, W >
1 1
1< mi+mo+mz,w> 1< mg+ms+meg+ mr,w >
1

1 < mi+ mg+ ms+ myg+ ms+ mg+ my+ mg,w >
To(ms) (Ta(ma) (To(m), Zo(ms) ) . Ta(ma) (To(ma), Zo(ms), Zo(ms)) ) -

ei<m1+m2+m3+m4+m5+m6+m7+m8,$> (138)

Here, the momenta mg, s = 1,---,8 are chosen so that none of the denominators vanish.
These examples exhibit a tree structure typical of iterative constructions. This structure is
most conveniently exploited by introducing the following notation.

Let 7; be the set of all rooted planar trees with nodes v =1, ---, 5 and root j .
Recall that a tree is a graph without loops and a rooted tree is a tree with a distinguished

node. For example,

(1.395)
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and

m1 o T4 ms me

2j — 2

There are 1 ( :
J ]—1

> < 47 rooted planar trees of order j . (See, [GJ] P.112)

We now inductively associate a vector Cp(mq,---,m;) € R2¢ to each tree T € T;
and assignment of momenta m, € Z¢ to the nodes v, v=1,---,5 of T by composing
the multilinear forms fn(k)(yl, e Un), n >0, k€ Z?. Suppose, T =- is the unique tree
in 77, then

~

CT(ml) = I()(ml) . (141)

Suppose, T € T;, j > 1. Let b>1 be the number of branches issuing from the root node
of T . Removing the root of T', we obtain b trees Ti, --- ,T, of orders ji, -+ ,7p with
Jji+--+Jp=7—1. Then,

Cr(my,---,m;) =

Ib(mj) (CT1 (mlﬂ T, mj1)ﬂ CT2 (mj1+1v B mj1+j2)7 B CTb (mj1+"'+jb—1+17 ) mj—l))

(I.42)

For example
Craogy (ma--+ym) = Tumy) ( -+ Ta(ma) (Ta(ma) (Zo(mr))))
and

C(I.4O) (m17 T mS) =

~

To(ms) (f2(m3) (io(ml)jo(m2))  Ta(my) (io(m4),io(m5)jo(m6))) .
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Finally, the value val(T)(mi,---,m;) of a tree T € 7; with momenta m,, v =

1,--.,7 assigned to the nodes of T is defined by

/

1
Va]_(T)(m17...’m‘7) — H Z<Z m w> CT(m]_7"'7mj) (I.43)
v'>v v

nodes v in T

Here,

/ 1 . .
|| - = {HnodesuinTa dy #O,VZL---,]
0

v otherwise

nodes v in T

Also, v/ = v if thereis a pathin T from v to v/ that is directed away from the root. In

' is at or above v in the partial order induced by the rooted tree structure.

other words, v
For example,

!/

val(1.395)(ma, - - -,m;) = C(r.395)(ma, -+ ,my)  (1.44)

1
H t<mp+---+ms,w >

1<s<j
and
val(1.40)(mq,---,mg) =
1 1 1 1 1
1< mM,w> 1< Mo,w> 1< Mg,w> 1< Ms,w > 1< Mg, w >
1 1
1< mi+mg+mg,w> 1< my+ ms+meg+mr,w >
1
1 < my+ mg+ msg+ myg+ ms + meg + my+ mg,w >
C(I.40) (my,---,mg)
We shall need a small modification of val(T")(mq,---,m;) . Set
’ 1

val(T)o(my, - ,my) =[] Cr(ma,---,m;)  (1.45)

< my ,w >
nodes v# root Z’Jlt” vio

for my4+---+m; =0.

Assembling all of this notation, one can easily verify
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Lemma [.1 (Tree Expansion)
Let P(z) and R(z,y) = O (|ly[®) be real analytic functions on T? and T?x B . Let
Q = QT be areal analytic, d x d symmetric matrix valued function on T¢ and « € B

Suppose, w € R? satisfies the Diophantine condition

T > d-—1

const
| <w,k>|> "

for all k#0 in Z¢ . Then the unique formal power series solution

u(x) ~ Z wj(w, )€l

321

v(x) ~ Z v;(z, a)e?
321

ple) ~ Y pie’
j=21

o(e) ~ Z oiel
321

to
(u”w>:61(az,u,v—|—a,e)—<p> (1.20)
Vpw o

with [u] =0, [v] =0 is given by

(ng;) = Z Z val(T)(ma, - - -, my) ei<mate+mse>

ml,-u,mjezd TEE

(g;) _ 3 > val(T)o(ma, - - -, m;)

my,-,my ezd TE?}
m1+---+mj=0

How large is val(T")(ma,---,m;) 7 To begin with,
|fn(k)(y17"';yn)‘ < const™ e~eonstlk| ly1| - |Yn|

forall n > 0, k€ Z% and yi1,---,y, € R?¢. This bound is obtained by applying Cauchy’s
theorem in a complex neighborhood of T% x {0} . Tt follows directly that,

ICr(my,--+,m;)| < const? emconstlimal+-—+im;l) (1.46)

One now has to estimate
/

1
‘ H Z‘<Zulty myr ,w >

nodes v in T

The crudest estimate using (I.4) is
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/

1 |
H , < H const Z |, |
nodes v in T L < ZV'EV My W > nodes v in T v'rv
J ™
< const’ (Z |, | )
v=1

A much more subtle bound is

Theorem 1.2 (Siegel’s Third Lemma)

Suppose w € R? satisfies

const
| <w,k>|> T >d-1 (1.4)

ik
forall k#0in Z% . Let T € T If my, € Z¢ v=1,---,j is an assignment of momenta

to the nodes of T satisfying
D M # ) mu
w'>pn v'>v

whenever p lies strictly above v on T , then

3T
ﬁ ! < j (Hmﬁéo |m”‘>
7;< ZU’EU my’ 7w>

nodes v in T

Proof: See [Si], [E1] and [E,] .

If Theorem 1.2 held for every T and assignment of momenta, then the tree expansion

would converge absolutely for small & since

Z e’ Z Z ‘val (ma, -+, m;) i<ty o> ‘

j>1 my,--,m;€Z TET;

< >SS ) mg) |

j=>1 my,--m;€ZI TET;
37
< Z gl 49 Z const? H |my | e~ const(imal+--+im;])
j>1 my,--,m;EZI m,, #0

< oo (|T;] < 47 is used in the preceding line )
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However, as Poincaré observed, this assumption is too naive, because for some trees and
momenta assignments that violate the hypothesis of Theorem 1.2 val(T')(m1,---,m;) is
anomolously large.

By Dirichlet’s theorem (See [Sc], P.27), there are infinitely many vectors m(™) in
Z%n > 1 satisfying

—(d—1)

n

| <m™, w>]| < const j

where

Jn = max{|m§")| 1§i§d—1}

To illustrate the phenomenon in its simplest form, suppose that for all n > 1
Zo(m™)| > const e~ o0stIn
and fl(l), fl(—l) # 0, where 1= (1,0,---,0). Then, in case j, is even,

val(1.397,)(m™,1,-1,---,—1,1) =

In In

1 2 1 2z
(i) ( ) Coma ey

i <m w> i<m® +1,w >

brutally violating the hypothsis of Theorem 1.2, and
) da—1\7In )
‘ val(1.39jn)(m("),1,—1,---,—1,1) ‘ > constI” (jn2 ) e~ constin
The case of odd 7, is similar. By Lemma I.1 and the last estimate

3 e val(1.395,) (m™, 1, -1, -+, —1,1) <> (1.48)
n>1

is a subseries of the tree expansion that diverges for all ¢ #0 .

Kolmogorov and Arnold ([K],[A2]) proved that the formal solutions of Theorem I.1

converge for small e. That is,

Z gl ‘ Z Z val(T)(my, - - -, m;) i<t tmy o>

i>1 mam;€Zd TET;
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converges, even though (as shown above),

S Y Y [l my)

i>1  my,mj€Zd TET;

diverges. Their proof is indirect. They essentially solve (I.20) by Newton’s method. The
super-convergence of the iterates is used to control the small divisors < w, k >71.

Eliasson [F1], extending the method of Siegel [Si], has show by direct estimation that
the series (1.21), converges. The idea is to isolate the mechanism responsible for anomolously
large contributions to the tree expansion and then, introduce more refined compensating

counter terms by another renormalization.
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I1. Ground State Energy Density
Let 1, ---, zn be the positions of N electrons, each of mass m, moving in the
periodic box R9¢/LZ% = [-L/2,L/2]%, d > 1, and interacting through a real two body

potential V(z) =V (|jz|) in L' N L*(R%). The Hamiltonian of our system (ignoring spin)

N
1 €
Hype= Z —%Am + 5 Z V(x; — x;) (I1.1)
irj

=1

acts on the Hilbert space

Py = {yp € I* (RY/1Z%)") |
Y(Trry, 775 Tr(n)) = (—1)39"(”)¢(x1, <o, zy) forall me SN}.
(I11.2)

We want to study the thermodynamic limit

H(g’ p) = N,]-:L.l,]ir)loo HN7La€ (11'3)

N _
zd=F

at particle density p.

The Hamiltonian # (e, p) is an unwieldy object. It is much more convenient to work
with a completely equivalent description of the thermodynamic limit in terms of the Schwinger
functions of an associated quantum field. However, to avoid the formalism of quantum field
theory as far as possible in the present discussion, we shall restrict our attention to a simple
physical quantity associated with 4 that already exhibits all of the difficulties inherent in
(I1.3). Namely, the ground state energy density.

The ground state energy per unit volume of Hpy p . is

inf spec (Hy 1, ¢
Eni(e) = —2 L(d NLe) (I1.4a)

Expanding,

Enc(e) =) &N ((;j)‘J) gl . (11.4b)

320
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The formal thermodynamic limit

Ee.p) = lim_ Ens(e)

N _

rd
—~1)7 :
~ Z Nliril EiNL ((2Jj)' ) g’ (I11.5)
3>0 X —p '
) )
~ Z £j ( ( 23 )] &’
7>0

is called the ground state energy density at particle density p. The rest of this section is
devoted to the formal power series (IL.5).

There is a tree expansion for E(e,p) . (See [FT1], Section 6 and [FT2], 218-223.)
Indeed, it motivated our presentation of Lemma I.1. Here, unfortunately, the recipe defining
the value of a tree contributing to &;(p) is much more complicated. The value of a tree is
itself expressed as a further sum over the values of vacuum graphs consistent with the tree.
(See [FT2],218-223.) To compress the discussion, we shall suppress the trees and procede to
write £;(p) as the sum over the values of all vacuum graphs.

We now introduce the notion of vacuum graph to prepare for an algorithm that,

roughly speaking, expresses &;(p) as sums of integrals of products of

V(p) = / dix eP*V(x), p€ R? (I11.6)
Rd
and free propagators
1
II.7a
tPo — e(P) ( )
where
2
P d_ . .d
) =2 - u= 2 (4r(s >p) (11.7)

By definition, a vacuum graph of order j is constructed from j; labelled vertices

by joining each of the 2j outgoing legs to one of the 2j incoming legs. There are (2j)!

vacuum graphs. For example,
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The directed and wavy bonds are called particle and interaction lines respectively. Joining a
pair of legs produces one particle line.

The lemma below takes the place of Lemma 1.1 for the ground state energy density.

Lemma I1.1

For each j >0,

&)=Y val(G)

G

where the sum is over all connected vacuum graphs of order j.

To complete the statement of Lemma II.1 the value of a vacuum graph wval(G)
must be defined. The rules, comprising the definition, are somewhat involved and therefore
best illustrated by means of an example.

We give the recipe for computing the value of the third order connected vacuum

graph
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(11.8)

The value of any other vacuum graph is computed in the same way. First choose a basis for

the homology (“momentum loops”)

(11.9)

and assign a (d+ 1) - momentum p = (py, p) € R4t to each cycle. In (I1.9) there are four

independent cycles.



One imagines that momentum p flows through the particle and interaction lines
forming the cycle to which it has been assigned and, that it flows in the direction induced by
the orientation of the cycle. For example, in (I1.9), p; flows up through the right vertical
interaction line, from right to left through the second horizontal particle line (counting from
the top), down the left vertical interaction line, and finally from left to right in the lower
particle line joining the interaction lines. Note that it flows against the intrinsic direction of
the upper particle line and with that of the lower one. Momentum p; also flows through
the second horizontal particle line. In contrast to po , the induced direction matches the
intrinsic one.

The value of (I1.8) is

4 d+1 1
/ e:l_[1 27T d+1 z291)0—6(1)1)

. 1 .
V(p2)i(p1 —pz)o - 6(P1 - Pz) V(pg)

1 1 1
i(p3)o — e(p3) i(p2 +p3)o — e(P2 + P3) i(p3)o — e(P3)
V(P?, - P4)

1

i(pa)o — e(p4) (I1.10)

where the integrand is the product of the five rows.

Expression (I1.10) is generated by, first observing that momentum p; flows in the
same direction as the topmost directed particle line. According to the general recipe, the
propagator (i(p1)o —e(p1))~! is placed in the product forming the integrand. Next, mo-
mentum py flows through both of the vertical interaction lines contributing the factors of
V (ps2) in the second row of (I1.10). The momenta p; and p, flow in opposite directions
through the other directed particle line forming the particle loop, with p; in the same direc-

-1

tion. Accordingly, the free propagator (i(p1—p2)o—e(p1—p2))~ ' is placed in the integrand.

1 appears twice because the momentum ps flows, with the

The propagator (i(ps)o—e(p3))~
same orientation, through both particle lines on the shoulders. And so on. In other words,

each particle line contributes a propagator, evaluated at an oriented sum of all momenta
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flowing through the line, to the integrand. The orientation of each momentum in the sum is
determined by comparing the direction of the cycle to which it has been assigned with the
intrinsic direction of the line. Plus, if they are the same, and minus, when opposite. Similarly,
the interaction lines contribute factors of V evaluated at an oriented sum of d-momenta.
Since V(p) is even, only the relative orientation matters. It is not hard to show that the
value of a vacuum graph is independent of the choice of homology basis. Changing homology
basis produces a linear change of variables inside the integral with Jacobian 1.

The derivation of Lemma I1.1 is too lengthy to include, or even sketch, here. For an

extended discussion see, for example, [FW, Chapter 3.

Write
d+1 2
walt119) = [ G 709 () V0 (1)
where
. dd+1p1 dd‘sz 1 ~ 1
ORI~ o e I e e _—
. 1
Vip2) i(p2 + q)o — e(pP2 + q)
and
B dd-{—lp4 . _ 1
U(q) —/ (amy V(q—pa) oo —emn) (11.12b)

The free propagator (ipg — e(p))~! has a linear singularity

‘ 1 1

- R~ (I1.13)
ipo — e(p) ‘ [po| + (const ) ||p| — v/2mp|

on the Fermi surface
{m=0,m=v%w} (I1.14)

If U(ps)T(p3) does not vanish on (I1.14), then

U(ps)T (p3) <z’(p3)0 i e(p3) ) 2

has a nonintegrable singularity on the Fermi surface and wval(/I.8) = cc.
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Observe that T(qo, Rq) = T'(go,q) for all R in O(d) . In particular, T'(qo,q) is

constant on the Fermi surface. Using residues to perform the (p1)o and (p2)o integrals

rg- [ e Vel
(2m)4*1 i(p2 + @)o — e(P2 + )
/ d’py sgn (e(P1))
e(p1)e(p1—pa)<0 (2T i(p2)o — (e(p1) — e(P1 — P2))
_ d'p; d’p, |V(P2)|2
oy EReemen<o 1 (2m)d (2m) T —igo — (e(p1) — e(P1 — P2) — (P2 + q))
(I1.15)
One can show that T(g) is a continuous function on R4+!. By (II.15)
T(qo =0, la| = /2mp) =
_ d?py dp, |27TV(I)2)‘2
e(p1)elp1—p2) <0 (2m)? (2m)4 (e(p1) — e(P1 — P2) — e(P2 + v2mpu q/|q]))

(e(p1)—e(P1—P2))e(P2+/2mp q/lql))<0

The constraints

e(p1)e(p1 — p2) <0, (e(p1) — e(pP1 — P2))e(P2 + v2mu q/lql)) <0

force the denominator to be of the same sign as e(p1) . Consequently, the integrand is

positive when p; is outside the Fermi surface and negative when it is inside. Therefore,

T(q0 =0, |a| = v/2mp) #0 (I1.16a)

for a generic interaction V . Also, by definition,

dd+1p4 R ei(p4)06

Y@= | e VAP 0, e

ddP4 ~
= Vig-p
/e(p4><o @mya V(47 P4)

so that

Ulgo = 0,]al = v/2mn) # 0 (I1.16b)

for a generic interaction V . Combining (II1.16) with the discussion above, we conclude that

val(I1.8) = oo for generic V .
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The mechanism of the last two paragraphs is quite general. Observe that T'(ps3) is
the value of the two-legged subgraph

(I1.17)

of (I1.8).

To be precise, a 2n-legged graph of order j is constructed as before from j labelled
vertices by joining all but n of the 2j outgoing legs to one of the 2j incoming legs. Of
course, there are n incoming legs left over. The value of a 2n-legged graph is computed by
choosing a basis for the homology, a distinguished external leg and 2n — 1 additional paths,
each joining an external leg to the distinguished one. It is a function (distribution) of the
momenta flowing in the 2n — 1 paths. (See, [FT1, p.165]) In (I1.17), momentum ps flows
in from the left along the bottom most particle line and out to the right.

Now, let

(I1.18)
be any vacuum graph with momentum p flowing along a cycle through a two-legged subgraph.

Then

val(I1.18) = / / (er;fl ( ! (p)>2 val(subgraph)(p) £(--- p).

ipg — €
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We see that val(11.18) is potentially divergent because

(ﬁf val(subgraph)(p) / o f(eop).

o — e
may have a nonintegrable singularity on the Fermi surface.

We know that any vacuum graph with a two-legged subgraph is potentially diver-

gent. Are there are other, perhaps more subtle, reasons for the value of a graph to diverge?

Theorem II.1 ([FT1], [FT2])

The value of any vacuum graph, without two-legged subgraphs, is finite.

It is implicit in Theorem II.1 that each order of perturbation theory is “ultraviolet finite”.

Concretely, let

be a smooth function interpolating between 0 and 1, and

h(pg + e(p)?)

0 — <o) (I1.19).

the ultraviolet (large momentum) part of the free propagator (IL.7). In particular, the cutoff
h(pg + e(p)?) excises a shell around the Fermi surface eliminating the singularity (II.14). In
the course of proving Theorem II.1, one shows that the ultraviolet value of any vacuum graph,
in which (I1.7a) is replaced by (I1.19), is convergent, but not necessarily absolutely convergent.
We may say that each graph is ultraviolet finite, but potentially infrared divergent when and
only when it contains a two-legged subgraph. Later, we will formulate a quantitative version
of Theorem II.1.
The “infrared” divergent portions of (II.18)

(ﬁ) val(subgraph) (p)

ipo — €
can be removed by introducing a counterterm

P

Dl 2mu) (11.20)

val(subgraph)(p/) = val(subgraph)(po = 0,
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for each two-legged subgraph, where
| Y
pl = (po=0, Pl 2mpu) (I1.21)
p
is the projection onto the Fermi surface. It is a number, because

val(subgraph)(po, Rp)) = val(subgraph)(po, p))

for all R in O(d) . Subtracting, the integral

d+1 2
// (;l;;di ( 1 )) (val(subgraph)(p) — val(subgraph)(p/)) f(--- p).

ipo — e(P
becomes finite because
1 2
(M) (val(subgraph)(p) — val(subgraph)(pr))
now has an integrable singularity on the Fermi surface. To apply Taylor’s theorm, it is
necessary to check that wval(subgraph)(p) is sufficiently regular.

In the last paragraph we implicitly assumed that all the two-legged subgraphs had
well-defined values. The idea, loosely speaking, is to start with first order graphs and proceed
inductively to define the renormalized value, val,.,(G) , of each j-th order graph. The first
nontrivial example is the third order graph (II.8). We subtract the counterterm (II.16) and

define its renormalized value by

Valyen (11.8) =

d*t1ps  d™'p, 1 2. 1
/ @m)E ()i (T(”?’)‘T(p’?’”(z'<p3>o—e<p3>) V(P2 =Py Gl

At order j , a two-legged subgraph is of order at most j — 1 . By induction, it has a
well-defined renormalized value. Therefore, the associated counterterm is also well-defined.
Subtracting, as above, we can construct the finite renormalized value of each j-th order
graph. Some work is required to implement this scheme. In [FT1] and [FT2] it is recast
as the iteration of a renormalization group map. This is a convenient setting in which to

perform the estimates.
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By definition, the renormalized ground state energy density is the formal power

Eren(E:p) ~ Y Eren i <(2_Jlj),3> &l

series

720 1 (I1.23)
:j;o (; Ualren(G,,u)) ( 271 )gj

where the sum ), is over all connected vacuum graphs. By construction, &e, j(p) is
finite at every order and a real analytic function of g > 0. Clearly, (I1.23) plays the role of
(1.21),. As in Section I, this remedy for infrared divergence might be unacceptable, because
Eren(g, p) , while well-defined, is not, on the face of it, the “true” ground state energy density.
However, it is justified, because it can be implemented by renormalizing the density p (or
equivalently, p ). That is, choosing p as a function (formal power series) of & in a specific

way.

Theorem I1.2 ([FT1], [FT2))
Fix )
2 (d__ . d d
=T (%pE .
Ho = — ( 1 (2)po)

Then, there is a unique, well-defined formal power series

&)=Y ué

320

(€,p(€)) ~ > Eren j(po) <(2_jlj),]) &

j=>0

=3 (Z valren(G,uo)) (%) ¥

320 G

such that

is a well-defined formal power series expansion for the ground state energy density at density

p(e) -

We remark that the proof of Theorem II.2 does not require an argument analogous to
(I.26,27,28,29). In Section I, the (infinite dimensional) group of formal symplectic maps
was used to show that when the d action parameters were exhausted by the first d countert-

erms, the the second d counterterms automatically vanished Here, both the counterterms at
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order j and p; are scalars, so there is no mismatch. However, in the renormalization of
a gauge field there again appear to be too many counterterms. In that context the (infinite
dimensional) group of gauge transformations generates Ward identities that force the “extra”

counterterms to vanish.

Our discussion of the ground state energy density and the accompaning vacuum
graphs led us naturally to two-legged graphs and their values. For this reason we consider

the analogous formal power series

where the internal sum is over all connected two-legged graphs, and in general,

Gn(q1, "+, q2n—1) ~ Z (Z val(G)(Q1,"',Q2n—1)) ((2_31])'3) e’ (I1.24),

320 G

where the internal sum is now over all 2n-legged graphs for which each connected component
contains an external leg. The “functions” G, ,n > 1, are called the Schwinger functions.
They characterize the thermodynamic limit. In fact, there is a standard procedure for con-
structing a Hilbert space and a semi-group from them. The generator of the semi-group is
the Hamiltonian (II.3). The formal power series defining the Green’s functions are ill-defined

for exactly the same reason as (I1.5) and may be renormalized in the same way.

To this point, though considerably more involved technically, the perturbative anal-
ysis of the ground state energy density (and, by the preceding remark, of the thermodynamic
limit (IL.3) itself) is a close parallel to the contruction of formal quasi-periodic orbits. There

is a further similarity. The values of some graphs contributing to &,., ; are just “too big”.
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Consider the j-th order “right-way ladder”

(I1.257)
By direct calculation, one can show (See, [FT1, p.197]) that

val(I1.255) ~ (const)? j! . (I1.26)

(Note that val(I1.255) = valyen(11.255) since (I1.25j) has no two-legged subgraphs.) Recall
that we formed graphs from labelled vertices. So, there are many graphs that look just like
(I1.25j) when the labels are erased. Counting carefully, one finds exactly 27! j! of them.

They all have the same value. Extracting these graphs, and forming the sum

> 2971 jlval(11.255) <(_1)j)gﬂ' ~ ) %j! (const )7 (—¢)? (11.27)

—
i20 27 i20

we see that there is a piece of E(g,p(e)) that diverges for all ¢ different from 0 . The

subseries (I1.27) should be compared with (I1.48).

The divergence of (I1.27) warns us that the series

E(e,p(€)) ~ > Eren j(po) ((_1)j> el

74!
o 2141

of Theorem II.2 may itself diverge. In fact, when the Hamiltonian (II.1) is supplemented by
the interaction between electrons and the vibrations of a background lattice of ions (that is,
phonons) the series cannot converge. (See, [FT2]) Then, the free ground state is unstable in
the thermodynamic limit, and one cannot, as we have done, naively expand about the free

Hamiltonian

N,L— o0
N _

d="*

N
1
Ho(e,p) = lim {Z —%Ami acting on FN,L}

=1
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The instability is caused by a phase transition to a superconducting ground state.

In Section 1, the series of Theorem 1.1 converge in spite of anomalously large con-
tributions to the tree expansion (See the remark following (1.48)). There are cancellations
between the values of different trees. Here, by contrast, the series of Theorem II.1 is forced

to diverge by the large values of certain graphs.

To see what is involved consider the following quantitative version of Theorems II.1

and I1.2. Let

(11.28)
be a connected vacuum graph of order j that contains no nontrivial two or four-legged

subgraphs and similarly, let

(11.29)
be a graph without two-legged subgraphs. Notice that the ladder (I1.25j) contains many four-
legged subgraphs.
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Theorem I1.3 ([FT1], [FT2])
(i)

val < (const)’

val < (const)! Np!

where Np is the maximal number of nonoverlapping, nontrivial four-legged subgraphs.

(iii) Let G be any connected vacuum graph. Then

valyen(G) < (const)? Np!

The constants in (i),(ii) and (iii) are independent of the graph. Similar statements

for 2n-legged graphs hold, when the size |---| is measured by an appropriate norm.

Theorem I1.3 is important. We now know that the only way to produce an effect
like (I1.27) is to accumulate four-legged subgraphs. However, as the strict inequality of (iii)

indicates,the appearance of many four-legged subgraphs does not guarantee that the value is
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large. For example, the j-th order “wrong-way ladder”

A 4

(11.307)
is only O ((const)?) .

We also learn from Theorem I1.3, that the value of a graph without two and four-
legged subgraphs (or, the renormalized value of a graph without four-legged subgraphs) is not
only finite, but the “right size”. The “right size”, in the sense that, it contributes a (const )’
at order ¢’ in the expansion of E£(e,p(¢)) and is therefore, “morally irrelevant” when ¢
is small.

Suppose the size of every graph were O(const?) , then the naive estimate

29)! o o
Z ;jj),‘ (const )&’ NZ j! (const )?e’
=0 = j>0

diverges because there are O((25)!) ~ O(const’ (5!)2) graphs. The large number of graphs
is a new feature. We saw, in Section 1, that, assuming Theorem I.2 for all trees and momenta
assignments, the tree expansion converges because there are at most 47 rooted planar trees.
This phenomenon is typical of systems with infinitely many degrees of freedom. To prove
convergence, cancellations between graphs must also be exploited.

Large graphs are handled in [FT2] by first carefully identifying the portions of four-
legged subgraphs that are responsible for their anomalous size. See [FT2],(1.29) and (I1.99).
Next, we decompose the Hamiltonian ([FT2], (I.64))into new “free” and “interacting” parts.

The new “free propagator” is
1
ipol — e(p)o® — Aol
where A is the solution of a BCS-like gap equation ([FT2, (I1.75)) and o!, o3 are Pauli

(I1.31)

matrices. Finally, the above portions of four-legged subgraphs are resummed by means of
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a renormalization group flow that converges to a nontrivial (superconducting) fixed point
near (IL.31) ([FT2], Theorem 1.3). This construction is too elaborate to discuss here. After

resummation, the value of each graph is O(const?) .
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