
Two Dimensional Many Fermion Systems
as Vector Models

Joel Feldman∗†

Department of Mathematics
University of British Columbia

Vancouver, B.C.
CANADA V6T 1Z2

Jacques Magnen†, Vincent Rivasseau†

Centre de Physique Théorique, CNRS UPR14
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§I Introduction

In [1] we considered a d ≥ 2 dimensional many Fermion interaction whose ℓ = 0

angular momentum sector is attractive and dominant. We showed that the effective vertex

in the symmetry breaking energy regime
(

k20 + e(k)2
)1/2 ≈ ∆ , where ∆ is the BCS gap and

e(k) = k2

2m −µ , has the structure of an N component vector model with N ≈ ∆−(d−1) . We

also verified that bubbles are neutral in powers of 1/N and that all other Fermion loops are

proportional to strictly positive powers of 1/N . It was then argued that this observation

justifies the usual one loop BCS gap equation.

Here we show, using the results of [2], that in two space dimensions the full inter-

action has the structure of a vector model at all energy scales. This structure was used in [2]

to show that the sum all of perturbation theory down to energy scale ≈ ∆ converges for all

bare coupling constants |λ| ≤ const where const is a strictly positive constant independent

of ∆ . We will also draw attention to the difference between two and three dimensions.

As in [1] we consider the model formally characterized by the action

A(ψ, ψ̄) = −
∫

d̄k
(

ik0e(k)
)

ψ̄(k)ψ(k)− V(ψ, ψ̄) (I.1)

in which k = (k0,k) ∈ IRd+1 and d̄k = dd+1k
(2π)d+1 . The interaction is

V(ψ, ψ̄) = λ
2

∫

4
∏

i=1

d̄ki (2π)
d+1δ(k1+k2−k3−k4) ψ̄(k1)ψ(k3) 〈k1, k2|V|k3, k4〉 ψ̄(k2)ψ(k4)

(I.2)

Here, k′ = (0, k
|k|

√
2mµ) is the projection of k onto the Fermi surface. In the above ex-

pressions, the electron fields are vectors ψ(k) =

(

ψ↑(k)
ψ↓(k)

)

and ψ̄(k) =
(

ψ̄↑(k), ψ̄↓(k)
)

whose

components ψσ(k) , ψ̄σ(k) are the generators of an infinite dimensional Grassmann algebra

over C. That is, the fields anticommute with each other. The generating functional for the

associated connected Euclidean Green’s functions is

S(φ, φ̄) = log 1
Z

∫

e
∫

d̄k (φ̄ψ+ψ̄φ)eA(ψ,ψ̄) ∏

k,σ

dψσ(k) dψ̄σ(k)

= log 1
Z

∫

e
∫

d̄k (φ̄ψ+ψ̄φ)e−V(ψ,ψ̄) dµC(ψ, ψ̄)

where dµC(ψ, ψ̄) is the Grassmann Gaussian measure with mean zero and covariance

C(ξ1, ξ2) = δσ1,σ2

∫

dd+1p

(2π)d+1

ei〈p , ξ1−ξ2〉−

ip0 − e(p)
〈p , ξ〉− = −p0t+ p · x (I.3)
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§II Slices and Sectors

In order to systematically investigate the long range behavior of correlation functions

at low temperature, it is natural to use a renormalization group analysis ([3],[4]) near the

Fermi surface. To do this, we slice the covariance (free propagator) around its singularity on

the Fermi sphere.

To analyze the ultraviolet and infrared behavior of a relativistic field theory, one

defines a momentum k to be of scale j if |k| ≈ M j . Here, M is just a fixed constant that

determines the scale units. As j → ∞, the momentum k approachs the ultraviolet end of the

model. As j → −∞, k approachs the infrared end of the model.

In non-relativistic solid state physics the natural scales consist of finer and finer

shells around the Fermi surface. For each negative integer j = 0,−1,−2, ... the j-th slice

contains all momenta in a shell of thickness M j a distance M j from the singular locus
{

k ∈ IRd+1
∣

∣ k0 = 0, |k| = √
2mµ

}

. The propagator for the j-th slice is

Cj(ξ1, ξ2) = δσ1,σ2

∫

d̄k
ei〈k,ξ1−ξ2〉−

ik0 − e(k)
1j
(

k20 + e(k)2
)

(II.1)

where 1j
(

k20 + e(k)2
)

is the characteristic function for the set M j ≤ |ik0 − e(k)| < M j+1.

For simplicity, we have introduced a sharp partition of unity even though a smooth one is

required for a complete, technically correct analysis [3,II.1]. Summing over j ≤ 0 , we obtain

the full infrared propagator C(ξ1, ξ2) =
∑

j≤0

Cj(ξ1, ξ2) . The full Schwinger functions are

obtained by assigning each line of each Feynman diagram a scale j and then summing over

all such assignments.

Each single scale propagator (II.1) is supported in momentum space on a d+1 dimen-

sional manifold with boundaries. The natural coordinates for this manifold are k0, η = e(k)

and k′ =
√
2mµ k

|k| . In these coordinates the shell is
{

k
∣

∣ M j ≤
√

k20 + η2 ≤ constM j
}

and

is topologically Sd−1 × S1 × [0, 1]. However the first factor, the Fermi sphere Sd−1, should

be viewed as having a macroscopic radius of order 1 while the remaining factors S1 × [0, 1]

should be viewed as having a small diameter of order M j at scale j.

The fact that this manifold has two length scales, 1 and M j, of radically different

size reflects the basic anisotropy between frequency k0 and momentum k. It implies, in
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contrast to the field theory case, that the behavior of Cj(ξ1, ξ2) at large ξ1 − ξ2 cannot be

simply characterized as ‘decay at rate M−j ’. Rather, Cj looks like

∣

∣Cj(ξ1, ξ2)
∣

∣ ≤ constM j
[

1 + |x1 − x2|
](1−d)/2[

1 +M j|ξ1 − ξ2|
]−N

when a smooth cutoff function is used.

To obtain regions in momentum space all of whose dimensions are of order M j , it

is natural to further divide the jth shell, through a partition of unity, into Nj = M−(d−1)j

pieces, each having longest and shortest diameters of order M j . We call each piece an

isotropic sector. These sectors function as colors in a many component model. This decom-

position is intimately related to Haldane’s innovative, nonperturbative investigation of the

Fermi surface. Related ideas appear in [5].

We now discuss an important question. Every interaction vertex couples four fields,

each of which has a sector index. How many 4-tuples of sector indices are coupled?

The momenta k1, k2, k3 and k4 of the four fields coupled by the vertex (I.2) are

constrained by conservation of momentum. If all of these momenta are of scale j ≪ 0, then

all of their 0th components are very close to zero and all of their lengths are very close to
√
2mµ. Generically, these are the only constraints relating k1, k2, k3 and k4.

In two space dimensions four momenta k1, k2, k3, k4 of very nearly the same

length which obey k1 + k2 − k3 − k4 = 0 form an approximate parallelogram.

k1

k2

k3
k4

The directions of two sides of a parallelogram may be chosen arbitrarily. Once they have been

chosen the directions of the remaining two sides are completely determined. Thus roughly

speaking, in two space dimensions, the sector indices of two momenta may be chosen arbi-

trarily and once they have been chosen the sector indices of the remaining two momenta are

fixed. As there are M−j different possible values of the sector index in two space dimensions,

the interaction (I.2) couples roughly M2j four-tuples of sector indices at scale j in two space

dimensions.
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In d > 2 space dimensions, the sectors of k1 and k2 can again be chosen arbitrarily.

There areM−2(d−1)j possibilities. Once k1 and k2 are chosen, the sum p = k1+k2 = k3+k4

is fixed. But the triangle with sides k3, k4 and p is still free to rotate about the fixed p.

k2

k1

k4

k3

p

The set of possible orientations of this triangle is Sd−2. Crudely speaking this accounts for

another M−(d−2)j possible sector choices. This calculation suggests that (I.2) couples on the

order of M−(3d−4)j four-tuples of sectors.

The following lemma, which is proven in [2], gives the precise result that is motivated

by the argument above. During a rigorous construction it is necessary to work in finite volume.

Then, momentum is not exactly conserved. That is, |k1 + k2 − k3 − k4| ≤ mM j for some

m > 0 . The lemma also takes this into account.

Lemma. Let m ≥ 1. The number of four-tuples {S1, S2, S3, S4} of sectors of scale j for

which there exist ki ∈ IRd, i = 1, 2, 3, 4 satisfying k′
i ∈ Si, |ki − k′

i| ≤ constM j and

|k1 + k2 − k3 − k4| ≤ mM j is bounded by constmdM (−3d+4)j(1 + |j|δd,2) .

Thus, in two dimensions, the number of four-tuples of sectors coupled at scale j,

with approximate conservation of momentum, is about N2
j where Nj = M−j is the number

of sectors. There is a logarithmic correction, |j|, that is generated when the “parallelogram”

almost collapses to a line. This logarithm can be accommodated constructively. See §III.

Recall that a vector model (~φ · ~φ)2 with N colours couples N2 four-tuples of colours.

The color index of one φ in a dot product determines the index of the other φ . The Lemma
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and the discussion preceding it show that the full two dimensional many Fermion vertex at

scale j conserves sector indices (up to corrections lower order in Nj ) just as an Nj-vector

model conserves color. Thus, the two dimensional vertex has the structure of a vector model.

We expect that this remark applies in other two dimensional solid state physics problems, for

example, localization of a single two dimensional electron in a weak random potential.

In three dimensions, the full vertex does not conserve sector index. Now, in addition

to the usual sector indices of k1 and k2, the angle between the triangles k1k2p and k3k4pmay

also be chosen freely. The vertex is “twisted”. By the Lemma, the number of coupled sector

four-tuples is M−5j. Since, the total number of sectors in three dimensions is Nj = M−2j,

we have M−5j = N
5/2
j . This count is intermediate between that for a vector model and that

for a matrix model. We have already seen that the n component vector model (~φ · ~φ)2 couples

N2 four-tuples. In a matrix model such as TrΦ4 where Φ is an N ×N matrix, the number

of choices is N4.

The conclusion of the last paragraph applies to generic vertices. In any dimension,

there are special interactions which have sector index conservation laws of vector type. For

example, the BCS interaction for s-wave Cooper pairs

−λ
∫

|q|<constMj

d̄q d̄t d̄s ψ̄↑(t+
q
2 )ψ̄↓(−t+ q

2 )ψ↓(−s+ q
2 )ψ↑(s+

q
2 )

or, indeed, the reduced interaction

∑

α,β∈{↑,↓}

λ

∫

|q|<constMj

d̄q d̄t d̄s 〈t,−t|V |s,−s〉 ψ̄α(t+ q
2
)ψ̄β(−t+ q

2
)ψβ(−s+ q

2
)ψα(s+

q
2
)

The vector structure of the s-wave vertex is discussed in [1]. More generally, in three dimen-

sions, any vertex that forces the four momenta to lie in a (possibly vertex dependent) plane

has the structure of a vector model.

§III Sectors and the Convergence of Many Fermion Perturbation

Series

In this section we compare the size of a single graph of order n with the size of the

sum of all graphs of order n. A complete discussion requires a full renormalization group
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analysis at all scales. Here, to concentrate on the effects of large order perturbation theory,

rather than the behaviour of the flow arising from low orders of perturbation theory, we fix

a scale j .

The Schwinger functions

S2p(ξ1, ξ2, ..., ξ2p−1, ξ2p) =
1

Z

∫

ψ(ξ1)ψ̄(ξ2)...ψ(ξ2p−1)ψ̄(ξ2p)e
−λVdµCj (ψ, ψ̄) (III.1)

for a theory at scale j are obtained by integrating against the Grassmann Gaussian measure

dµCj whose propagator Cj is given by (II.1). Here, λV = V . These Schwinger are analytic in

λ in a neighbourhood of λ = 0. Does the radius of analyticity, rj , remain bounded away from

zero as j → −∞? Control of rj is an essential ingredient in any nonperturbative program

to prove that the renormalization group flow converges.

We have

Theorem. [2] In two space dimensions rj ≥ const > 0

So, for a weakly coupled two dimensional model with a circular Fermi surface, there are (as

expected) no exotic effects due to high orders of perturbation theory. Presently, there is no

analogue of the Theorem in three dimensions. Our best estimate, to date, is rj ≥ constM j/2 .

To explain the role of sectors in the proof of the Theorem we must explain how

power counting estimates for a single graph of given order (perturbative power counting)

differs from power counting estimates for the sum of all graphs of that order (constructive

power counting). Let Gn,p be a connected graph of scale j and order n with 2p external

lines. The number l of lines and the number L of independent loops in this graph are given

by l = 2n − p and L = l − n + 1 . Since, the propagator
1j(p

2
0+e(p)

2)
ip0−e(p)

of scale j is bounded

by M−j and supported on a set of volume M2j, the perturbative power counting bound,

ignoring unimportant constants, for Gn,p is

M−jlM2jL =M (2−p)j

The first factor arises from taking the supremum
1j(p

2
0+e(p)

2)
ip0−e(p)

on each line. The second factor

is the total volume of integration for the L momentum integrals. This perturbative power

counting is independent of dimension and is typical of strictly renormalizable theories like φ44.
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The same bound can also be derived in position space as follows. Write Cj as the

sum of M−(d−1)j single sector propagators and smooth off the characteristic function 1j .

Each single sector propagator obeys the position space bound

|Cj,s(ξ1, ξ2)| = δσ1,σ2

∣

∣

∣

∣

∣

∫

dd+1p

(2π)d+1

ei〈p,ξ1−ξ2〉−

ip0 − e(p)
1j(p

2
0 + e(p)2)gs(p)

∣

∣

∣

∣

∣

≤ constM (d+1)jM−j[1 +M j|ξ1 − ξ2|]−100 (III.2)

where 100 is a generic large number. The first factor is the volume of integration. The

second is the supremum of the integrand. The third is derived through multiple integration

by parts. Thus, when Gn,p is evaluated in position space, there is one factor of Mdj per line.

Furthermore, the position of one vertex is held fixed and the positions of the remaining n− 1

vertices are integrated over IRd+1. Since each such integral is controlled using a function

that decays at rate M j each such integral yields M−(d+1)j . Finally the sector index of each

propagator must be summed over. But, by conservation of momentum, there really are only

L independent sector index sums. So the bound is

M ldjM−(n−1)(d+1)jM−L(d−1)j =M j(2−p)

Ideally, the sum of all nth order graphs contributing to (III.1) would also be bounded

by const nM j(2−p) . However, the argument given above cannot be directly applied to the

sum of all graphs because they do not share a fixed loop structure.

Up to now, constructive methods to sum up graphs [2,6] have more or less proceeded

along the following lines. The sum over connected graphs is divided into two phases. The

first is the sum over all trees. The second is a sum over graphs having the given tree as a

spanning tree. The second phase is implemented by choosing “Wick contractions” to add

loops to the spanning tree.

a linear spanning tree a Wick contraction scheme

The choice of tree, by Cayley’s theorem, is bounded by nn−2 and is paid for (up to an
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unimportant en) by the symmetry factor 1/n! for n vertices that arises from the expansion

of the exponential e−λV. Once the tree is known, one can integrate over the positions of

vertices at a cost of M−(n−1)(d+1)j . The number of possible sector index assignments to the

lines of the tree lines depends somewhat on the exact branching structure of the tree. It can

be as large as M−(n−1)(d−1)j . This happens in, for example, the typical case of a linear tree.

Combining this, as before, with the prefactor M ldj of (III.2) for all the lines we get M (2−p)dj ,

independent of n. However it remains to bound the sum over possible “Wick contractions”

for the loop lines.

In fermionic theories, this sum has the form of a determinant. To bound this deter-

minant without expanding it fully (which would lead to the usual divergence of perturbation

theory) one must exploit the Pauli exclusion principle. It states that there is, roughly speak-

ing, only one ψ̄ and one ψ per unit volume in phase space. The decay of the propagator in

(III.2) damps contractions between ψ’s and ψ̄’s that are widely separated (in units of M−j)

in position space. So we may pretend that there is only one ψ and one ψ̄ in each sector of

momentum space. (The technical details filling in this argument are given in [2].) Since fields

may only contract to other fields in the same sector (or neighbouring sectors), once sector

attributions are made for each uncontracted field hooked to the spanning tree the pattern of

Wick contractions is essentially determined.

It only remains to count the number of possible sector index assignments to the ψ’s

and ψ̄’s that are not in the spanning tree. At this point the key difference between two and

three dimensions appears. Consider the typical case in which the spanning tree is a linear

tree. Since sector indices have already been assigned to the lines of the spanning tree, we

know the sector indices of two out of the four fields at each vertex. In two dimensions, the

factorized form of the vertex fixes the sector indices of the remaining two fields up to the

logarithmic correction of the Lemma. In three dimensions there is no logarithm , but the

“twist” costs an M−j per vertex. This means that a naive lower bound for the radius of

convergence rj is M
j in three dimensions and 1/| log j| in two dimensions.

We can actually get a better bound on rj by using “anisotropic” sectors whose

dimensions tangent to the Fermi surface are of order M j/2 and whose remaining dimensions

are still of orderM j. Using Pauli’s principle in corresponding anisotropic unit volume cells of
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phase space one obtains that the radius of convergence rj is at leastM
j/2 in three dimensions

and O(1) in two dimensions.

The general conclusion of this section, is that sectors are unnecessary for bounding

a single graph, but are essential for summing up the full perturbation series.
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