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1. Introduction

Symmetric enumeration of certain Vilenkin systems was used in work [1, §5] on inte-
grability of Vilenkin series of unbounded type. There, this enumeration had the advantage
that the sequence of Fejér kernels, defined as averages of symmetric Dirichlet kernels, is
bounded in L1-norm, while this is not true for any standard enumeration. Moreover, there
are results in [1, §5] for the unconventional enumeration where it is not yet known whether
the standard counterpart holds.

In the rest of this section, we repeat the description of symmetric enumeration given
in [1], state our main results, and connect them with previous work. We prove them in
the next three sections. We use the term fully-odd Vilenkin system for any orthonormal
system of functions that can be constructed in the following way.

Choose a nonatomic probability space Ω, like the interval [0, 1), and a sequence (pr)∞r=0

of odd prime numbers. Let Γ0 be the singleton set containing the constant function 1.
Let φ1 be a function taking each value in the set of p1-th roots of unity with probabil-
ity 1/p1. Let Γ1 be the set of all functions φn

1 with 0 ≤ n < p1.

For each positive integer r, let mr =
∏r

s=1 ps. When r > 1, assume that a set Γr−1

of mr−1 functions on Ω has been specified. Then select three functions αr, βr, and γr with
the following properties:
(i) αr belongs to Γr−1;
(ii) βr is a pr-th root of αr that is constant on each set where αr is constant;
(iii) γr takes each value in the set of pr-th roots of unity with probability 1/pr ;
(iv) γr is independent of the functions in the set Γr−1.
Let φr be the product γrβr. Then φpr

r = αr ∈ Γr−1. Let Γr be the set of all functions
obtained by multiplying the functions in Γr−1 by the powers φn

r with 0 ≤ n < pr.

Continue this for all r. The system of functions constructed in this way is said [12]
to be of bounded type if the sequence (pr) is bounded. When αr = 1 for all r, the system
is said [13] to be of multiplicative type. Some authors include the latter property in their
definition of Vilenkin system, and some do not, making comparison of results in the area
tricky. In studies of multiplicative systems, the numbers pr are often only required to be
positive integers, rather than being prime as above. The methods we use in this paper
work as long as these numbers are odd.

In the standard enumeration of the system, the functions in Γr are indexed by the set
of integers in the interval [0,mr). Assume that the set Γr−1 has already been enumerated
as {χn} with 0 ≤ n < mr−1. Each integer n in the interval [mr−1,mr) has a unique
representation as n = jmr−1 + k with 1 ≤ j < pr and 0 ≤ k < mr−1; then let χn be the
product (φr)jχk.

Our assumption that the prime numbers pr are all odd makes all the products mr

odd too; then nr ≡ (mr − 1)/2 is an integer. In the symmetric enumeration, the set Γr

is mapped to the set of integers in the interval [−nr, nr]. Each integer in this interval
has a unique representation as a sum of products qsms−1, where 1 ≤ s ≤ r and the
integers qs satisfy −ps/2 < qs < ps/2. Moreover [1, §5], each function in Γr has a unique
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representation as a product of finitely-many powers φqs
s with the same restrictions on s

and qs. Call this factorization of the function minimal and use the same terminology for
the corresponding additive representation of the integer n.

We use the different notation (ψn)∞n=−∞ for the functions in the Vilenkin system when
we enumerate them symmetrically by letting

ψn =
∏
s

φqs
s if n =

∑
s

qsms−1

in a minimal way. In both the sum and the product there are only finitely-many nontrivial
terms.

The following facts are easy to verify and will be useful later. If a function belongs
to the system, so does its complex conjugate. Moreover, ψn = ψ−n; when k > 0, use k̃ to
denote the index for which χk = χk̃. If ψn = χk, then |n| ≤ k, with equality if and only if
the integers qs in the representation of n are all nonnegative. If the system is of bounded
type, then there is a constant C so that k ≤ C|n| whenever χk = ψn. There is no such
constant C if the system is not of bounded type, but min{k, k̃} ≤ 2|n| in any case.

Denote the probability measure on Ω by dω. Given a function f in L1(dω) and an
integer n, let

f̂(n) =
∫

Ω

f(ω)ψn(ω) dω.

We also regard f̂ as a function on the set Γ = {ψn}∞n=−∞, and then use the notation f̂(ψn)
rather than f̂(n).

Some results about coefficients of functions in classical Hardy spaces can be proved
using the group structure of the index set Z as the main tool. We show here that enough
of this structure transfers to symmetrically enumerated Vilenkin systems to prove the
counterparts of two well known facts for the trigonometric system. Recall [9] that a Paley
sequence is a sequence (λj) of positive integers with the property that there is a constantK
so that each interval (2s, 2s+1] contains at most K terms in the sequence; in particular,
this is true if there is a constant C > 1 so that λj+1 ≥ Cλj for all j.

Theorem 1. Let f ∈ L1(dω) and f̂(ψn) = 0 for all n < 0. Then

∑
n>0

∣∣∣f̂(ψn)
∣∣∣

n
<∞. (1.1)

Moreover, if (λj) is a Paley sequence, then

∞∑
j=1

∣∣∣f̂(ψλj
)
∣∣∣2 <∞. (1.2)

3



Hardy and Paley inequalities 30 July 1996

To connect this with other work, we note first that there is an obvious candidate here
for the rôle of conjugate function. Given a function f in L1, we ask if there is a function f̃
in L1, so that ∫

Ω

f̃(ω)ψn(ω) dω = −i · sgn(n)f̂(ψn) for all n.

An equivalent way to state our theorem is that the inequalities hold for any integrable func-
tion f that has an integrable conjugate function. For fully-odd systems of multiplicative
type, that conjugate function differs only by a constant factor ±i from the one introduced
by P. Simon [10]; our description of it only appears different because of our unconventional
enumeration of the fully-odd Vilenkin system.

Corollary 2. If an integrable function f has an integrable conjugate, then its coeffi-
cients (f̂(χk))∞k=0 with respect to the standard enumeration satisfy the condition that

∑
k>0

∣∣∣f̂(χk)
∣∣∣

k
<∞, (1.3)

and they also satisfy the condition that

∞∑
j=1

∣∣∣f̂(χλj
)
∣∣∣2 <∞ (1.4)

for all Paley sequences (λj).

Various kinds of H1-spaces have been considered for various Vilenkin systems, and
Hardy inequalities (1.3) have been shown [5] to hold for some of these H1-spaces and
to fail for others. When the fully-odd Vilenkin system is multiplicative and of bounded
type, the H1-space defined via the conjugate function coincides with [14] those defined via
martingales. Inequality (1.3) is known [2] for the martingale H1-spaces for such systems.
Inequality (1.1) then follows, because indices k and n that enumerate the same function
all satisfy a common inequality of the form k ≤ C|n| when the system is of bounded type.

The same equivalences between types of H1-spaces makes inequality (1.4) already
known for multiplicative systems of bounded type; inequality (1.2) then follows for such
systems. As with the Hardy inequality, our proof does not use this transference.

When the fully-odd system is not of bounded type, the theorem and corollary are new.
Finding an independent proof of the corollary would provide another proof of the theorem
for the following reaons. If f satisfies the hypothesis of the corollary, then so does f .
Hence the versions of inequalities (1.3) and (1.4) with f̂(χk) replaced by f̂(χk̃) also hold.
Inequality (1.1) then follows because 2|n| ≥ min{k, k̃} when ψn = χk. Inequality (1.2)
follows because, if (λj) is a Paley sequence and ψλj

= χkj
for all j, then (kj) is a Paley

sequence.
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2. Hardy inequalties for systems of bounded type.

To prove the first part of Theorem 1 we show that there is a constant C so that

nr∑
n=1

|f̂(n)|
n

≤ C
∥∥∥f − f̂(0)

∥∥∥
1

(2.1)

for all nonnegative integers r and all functions f satisfying the hypotheses of the theorem.
We will see later that the same large enough constant C can be used for all fully-odd
systems, but we will work in this section on systems of bounded type.

We use a variant [4] of the method introduced in one of the proofs [7] of the Littlewood
conjecture about L1-norms of exponential sums. For a small, positive constant c and each
nonnegative integer r, we construct a function gr so that ĝr(n) = 0 for all n > nr, while∣∣∣∣∣∣ĝr(n)− c

sgn
[
f̂(n)

]
n

∣∣∣∣∣∣ ≤
c

2n
when 1 ≤ n ≤ nr. (2.2)

Moreover, gr is a linear combination of finitely-many of the functions ψn, and ‖gr‖∞ ≤ 1.
Then the absolute value of the integral of [f − f̂(0)] · gr is bounded above by ‖f − f̂(0)‖1,
but the real part of that integral is bounded below by

c

2

nr∑
n=1

|f̂ (n)|
n

.

This yields inequality (2.1) with C = 2/c.

For a choice of the positive constant c that we will specify soon, and each positive
integer r, we let

Fr = c
∑

nr−1<n≤nr

sgn
[
f̂(n)

]
n

ψn, (2.3)

with the convention that n0 = 0. Among other things, we need to have that

‖Fr‖∞ ≤ 1
2

for all r. (2.4)

Now ‖F1‖∞ ≤ cn1, and

‖Fr‖∞ ≤ c ln
(

nr

nr−1

)
= c ln (pr)

when r ≥ 2. Since the system is of bounded type, inequality (2.4) holds for all sufficiently
small positive values of c. We then let

g0 = 0 and gr = Fr +
[
1− 4 |Fr|2

]
gr−1 − Fr [gr−1]

2 for all r > 0. (2.5)
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Condition (2.4) and induction on r imply [8] that

‖gr‖∞ ≤ 1 for all r. (2.6)

Let
dj = −4|Fj |2gj−1 − Fj[gj−1]2 for all j > 0,

and let

er =
r∑

j=1

dj for all r.

Following [7], we call the quantities dj and er detriments. We then have that

gr = er +
r∑

j=1

Fj. (2.7)

The Vilenkin coefficients of the sum of the functions Fj above vanishes outside the inter-
val [1, nr] and coincides with c · sgn[f̂(n)]/n on that interval. This reduces the verification
of the desired conditions on the coefficients of gr to checking that êr(n) = 0 when n > nr

and that |êr(n)| ≤ c/2n when 1 ≤ n ≤ nr.

We claim that ĝj and d̂j both vanish outside the interval [−nj , nj ] that indexes the
set Γj . This is certainly true when j = 1, because g1 = F1 and d1 = 0; assume that our
claim is true when j = r− 1, and consider the terms in line (2.5) that add to form gr. The
coefficients of Fr vanish outside (nr−1, nr], and those of gr−1 vanish outside [−nr−1, nr−1]
by our inductive hypothesis. Hence the coefficients of Fr + gr−1 vanish outside [−nr, nr].

Turning to the parts of dr, we use the fact that the functions in Γr form a group under
multiplication. By the inductive hypothesis, gr−1 is a linear combination of functions
in Γr−1, which is a subgroup of Γr; hence [gr−1]2 is also a linear combination of functions
in Γr−1, and these functions all belong to Γr. Clearly, Fr is a linear combination of
functions in Γr, and so is Fr. Then the products FrFrgr−1 and Fr[gr−1]2 are also linear
combinations of functions in Γr. This confirms our claim that d̂j vanishes outside the
interval [−nj , nj ]. So does

ĝj = F̂j + ĝj−1 + d̂j .

In particular, êr(n) = 0 for all n > nr. We estimate êr(n) when 1 ≤ n ≤ nr

by estimating the corresponding coefficients of dj . We first consider those coefficients
for −Fj [gj−1]2. We saw above that the function gj−1 and its square are linear combinations
of functions in the set Γj−1; any function in this set is a minimal product of powers φqs

s

with qs = 0 when s ≥ j. On the other hand, Fj is a combination of such products with
qj > 0 and qs = 0 when s > j; then Fj is a similar combination of such products with
qj < 0. Since Γj−1 is a group, multiplying Fj by −[gj−1]2 still gives a linear combination
of such products with qj < 0 and with qs = 0 when s > j. Any such product is indexed
as ψn for some negative integer n.
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This makes the coefficients of −Fj[gj−1]2 vanish on the set of nonnegative integers,
and reduces our task to estimating the coefficients of −4|Fj |2gj−1. If j = 1, then gj−1 = 0,
and all these coefficients vanish. Suppose that j > 1. Since ‖gj−1‖∞ ≤ 1, each of the
coefficients of −4|Fj |2gj−1 is bounded in modulus by the L1-norm of 4|Fj |2, and hence by
the square of the L2-norm of 2Fj . That square is equal to the sum of the squares of the
coefficients of 2Fj , that is to

∑
nj−1<n≤nj

(
2c
n

)2

<
4c2

nj−1
. (2.8)

This is an upper bound for the modulus of any coefficient of dj, and these coefficients
vanish to the right of nj .

Given a positive integer n, choose j so that nj−1 < n ≤ nj . If j > 1, then

|êr(n)| ≤
∑
s≥j

∣∣∣d̂s(n)
∣∣∣ ≤ ∑

s≥j

4c2

ns−1
. (2.9)

Since the primes ps used to define the Vilenkin system are all odd, ns ≥ 3ns−1 for all
s > 1. Hence the series on the right in line (2.9) can be majorized by the geometric series

∑
s≥j

4c2

nj−1

(
1
3

)s−j

=
16c2

3nj−1
.

Our current assumption that the system is of bounded type means that there is a con-
stant K so that nj/nj−1 ≤ K for all j > 1. Combining these estimates gives that

|êr(n)| ≤ 16Kc2

3n
for all n > n1. (2.10)

If j = 1 instead, then 0 < n ≤ n1. Since d1 = 0,

|êr(n)| ≤
∑
s>1

∣∣∣d̂s(n)
∣∣∣ ≤ ∑

s>1

4c2

ns−1
,

and the right side here is again majorized by 16Kc2/(3n). That majorant is bounded above
by c/2n, as desired, if c ≤ 3/(32K). Any such choice of c will also make ‖Fr‖∞ ≤ 1/2 for
all r. This completes our proof of the Hardy inequality for systems of bounded type.

7



Hardy and Paley inequalities 30 July 1996

3. Hardy inequalities for systems of unbounded type.

When the system is not of bounded type, inequalities (2.4) and (2.10) can fail if
the functions Fr are defined as in the previous section. To deal with this, we use a
suitable increasing sequence (ti)∞i=0 of nonnegative integers to split some of the intervals
[nr−1, nr). Our procedure is similar to one used in a dual setting in [11] and [5]. We
include the numbers nr, as a subsequence (tir

) say of (ti), and if pr = 3, then nr−1

and nr are consecutive terms in (ti), that is ir = ir−1 + 1. When pr > 3, we choose
the succesive numbers ti that lie in the interval [nr−1, nr) so that the number of integers
in [−nr−1, ti] doubles each time i increases, until we reach the point where [−nr−1, ti]
contains at least 1/4 of the integers in [−nr−1, nr], and then we let ti+1 = nr = tir

.

Another way to describe this is to note first that [−nr−1, nr−1], which is the same
as [−nr−1, tir−1 ], contains exactly mr = 2nr + 1 integers. Then (tir−1 , tir−1+1] contains
the next mr integers, (tir−1+1, tir−1+2] contains the next 2mr integers after that, and the
lengths of the intervals (ts, ts+1] continue to double, except that the length of the final
interval (tir−1, tir

] does not have to be equal to a power of 2 times mr. That length is
still divisible, however, by mr, and is larger than the length of the rest of (nr−1, nr]. One
reason for this divisibility property is that each of the sets (ts, ts+1] ∪ [−ts+1,−ts), where
nr−1 ≤ ts < nr, enumerates a union of finitely-many cosets of Γr−1 in Γr.

We now work with the revised functions

Fj = c
∑

tj−1<n≤tj

sgn
[
f̂(n)

]
n

ψn, (3.1)

with t0 ≡ 0. Since the numbers ln(tj/tj−1) with j ≥ 2 form a bounded sequence, we
recover the conclusion that

‖Fj‖∞ ≤ 1
2

for all j (3.2)

if the positive constant c is sufficiently small.

Let T be the set of positive integers j for which tj = nr for some r, that is j = ir; call
these values of j terminal indices. Let E be the set of even positive integers that are not
terminal, and let O be the set of odd positive integers that are not terminal. Let FT

j = Fj

if j is terminal, and let FT
j = 0 otherwise. Define functions FE

j and FO
j similarly. Then

let

gT
0 = 0 and gT

j = FT
j +

(
1− 4

∣∣FT
j

∣∣2) gT
j−1 − FT

j

[
gT

j−1

]2
for all j ≥ 1. (3.3)

Define functions gE
j and gO

j similarly; then gT
j , gE

j , and gO
j all belong to the unit ball

of L∞. Let
gj = gT

j + gE
j + gO

j . (3.4)

Then ‖gj‖∞ ≤ 3 for all j.
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Inequality (2.1) follows with C = 6/c if condition (2.2) holds. Verifying that condition
again reduces to locating and estimating the nonzero coefficients of detriments. Let

dT
j = −4

∣∣FT
j

∣∣2 gT
j−1 − FT

j

[
gT

j−1

]2
for all j > 0,

and define dE
j and dO

j similarly. Let

dj = dT
j + dE

j + dO
j for all j, and let er =

r∑
j=1

dj for all r.

For each value of j, two of the functions FT
j , FE

j , and FO
j are trivial, and the other one is

equal to Fj . It follows that formula (2.7) still holds.

The detriment dT
j vanishes if FT

j does, and similarly for dE
j and dO

j . So, for each
value of j, at most one of these detriments can have nonzero coefficients. Assume for the
moment that these coefficients vanish to the right of tj . Also assume that the nonzero
coefficients of −FT

j [gT
j−1]

2 all have negative indices, and that the same is true when the
superscript T is replaced by E or O.

Then matters reduce to applying `2-estimates to the coefficients of products like
−4|FT

j |2gT
j−1. When j > 1 the modulus of any coefficient of the product is at most

4c2/tj−1. When n ∈ (tj−1, tj ] and j > 1, this leads to the inequality

|êr(n)| ≤
∑
s≥j

∣∣∣d̂s(n)
∣∣∣ ≤ ∑

s≥j

4c2

ts−1
.

Since ts ≥ 2ts−1 for all s > 1, the series on the right above can again be majorized by a
geometric series, which converges this time to 8c2/tj−1. Since tj ≤ 4tj−1 for all j > 1, it
follows that

|êr(n)| ≤ 32c2

n
for all n ≥ n1.

Again, the fact that d1 = 0 makes it easy to also obtain this estimate when 0 < n ≤ n1.
The right side above is majorized by c/2n if c ≤ 1/64. Then inequality (2.1) holds with

C =
6
c

= 384

for all fully-odd Vilenkin systems.

Finally, we verify the assumptions made above about the locations of the nonzero
coefficients of the detriments and the products −FT

j [gT
j−1]

2, −FE
j [gE

j−1]
2, and −FO

j [gO
j−1]

2.
We begin by checking that the argument in the previous section applies to the first of these
products, which vanishes unless j ∈ T . Recall that the set T is enumerated as {ir}∞r=1,
and that tir

= mr. Then

gT
ir

= Fir
+

(
1− 4 |Fir

|2
)
gT

ir−1
− Fir

[
gT

ir−1

]2
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when r > 1. The coefficients of Fir
vanish outside the corona Γr/Γr−1. It follows by in-

duction on r that the coefficients of gT
ir

vanish outside the subgroup Γr; in particular, these
coefficients vanish to the right of mr = tir

, and so do the coefficients of the corresponding
detriment. It also follows that the nonzero coefficients of −FT

ir
[gT

ir−1
]2 all have negative

indices.

Now consider gE
j , but note that the same reasoning applies to gO

j . Enumerate the
set E, in increasing order, as {jk}K

k=1; here K is finite only if pr = 3 for most values of r.
Then

gE
jk

= Fjk
+

(
1− 4 |Fjk

|2
)
gE

jk−1
− Fjk

[
gE

jk−1

]2

when k > 1. Let r(j) be the smallest integer for which nr(j) ≥ tj . As in the previous case,
the coefficients of gE

j and dE
j vanish outside the subgroup Γr(j).

By itself, this does not yield the desired upper bound of tj on the supports of these
coefficients, because tj < nr(j) when j is not terminal. These supports are easier to analyse
when jk is initial, that is r(j′) < r(jk) whenever j′ < jk and j′ ∈ E. Then the coefficients
of gjk−1 vanish outside the subgroup Γr(jk)−1, while the coefficients of FE

jk
vanish outside

the corona Γr(jk)/Γr(jk)−1. So the nonzero coefficients of −FE
jk

[gjk−1]2 all have negative
indices when jk is initial.

Consider the coefficients of FE
jk

in that case. If they differ from 0 at ψn, then ψn is a
product of powers φqs

s with 0 < qr(jk) < pr(jk)/2 and qs = 0 when s > r(jk). Moreover, it
must actually be true here that

0 < qr(jk) <
pr(jk)

4
,

because any larger value of qr(jk) would force the index n into the second half of the interval
(nr(jk)−1, nr(jk)], and that half is covered by (ts−1, ts] for the smallest terminal index s that
exceeds jk; being terminal, that index s does not belong to the set E.

This makes it easier to study the indices of nonzero terms in the product FE
jk
FE

jk
.

Suppose that two functions, ψ and ψ′ say, in the Vilenkin system are factored minimally
as products of powers φqs

s and φ
q′s
s with qs = 0 and q′s = 0 for all s > r(jk). Then their

product ψ′′ = ψψ′ also has a minimal factorization with indices q′′s = 0 for all s > r(jk).
Moreover,

q′′r(jk) = qr(jk) + q′r(jk) (3.5)

provided that the right side above lies in the interval (−pr(jk)/2, pr(jk)/2). In particular,
this happens if

|qr(jk)|+ |q′r(jk)| <
pr(jk)

2
. (3.6)

Condition (3.6) is satisfied by any pair of nonzero terms in the sum giving FE
jk

when jk
is initial. Let Q(jk) be the largest value of qr(jk) in the minimal factorizations of functions
represented by integers in the interval (tjk−1 , tjk

]. Then the coefficients of FE
jk
FE

jk
can only
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differ from 0 at functions with minimal factorizations with indices qs that vanish for all
s > r(jk) and for which |qr(jk)| < Q(jk). This is also true for the coefficients of the
product |FE

jk
|2gjk−1, because gjk−1 is a sum of terms with qs = 0 for all s ≥ r(jk) when jk

is initial. Then the coefficients of |FE
jk
|2gjk−1 vanish to the right of tjk

, as required. So do
the coefficients of gE

jk
and dE

jk
.

We now suppose that jk belongs to E but is not initial. To get similar conclusions
about coefficients, we consider the set of even integers j′ ≤ jk for which r(j′) = r(jk). We
show by induction on j′ that the coefficients of gE

j′ must vanish except at functions that
have a minimal representation with qs = 0 for all s > r(jk) and with

−2Q(j′) ≤ qr(jk) ≤ Q(j′). (3.7)

We note that 2Q(j′) < pr(jk)/2 here, because these indices j′ are not terminal.

There is an initial even integer, j′0 say, for which r(j′0) = r(jk). By the previous
analysis, the nonzero terms in the expansion of gE

j′0
all have minimal factorizations with

−Q(j′0) ≤ qr(jk) ≤ Q(j′0).

Hence the inductive assumption (3.7) is more than satisfied when j′ = j′0. Suppose it is
true when j′ = h, and pass to the next case, if there is one, where j′ = h+ 2 and j′ ≤ jk.
Since h+2 is not terminal, Q(h+2) < pr(jk)/2. Recall that the lengths of the nonterminal
subintervals (ts−1, ts] in (nr(jk)−1, nr(jk)] double as s increases; it follows that the integers in
the first such subinterval (ts−1, ts] are all minimally represented with qr(jk) = 1, that qr(jk)

takes the values 2 and 3 for all the integers in the next such subinterval, and so on.
Therefore Q(h) has the form 2m − 1 for some integer m, and then Q(h + 2) = 2m+2 − 1;
in particular, Q(h) < Q(h+ 2)/4.

Consider the nonzero terms in the expansion of the functions that add to form gE
h+2

from gE
h and FE

h . By hypothesis, those terms in the expansion of gE
h satisfy condition (3.7)

at the level j′ = h, and hence at the level j′ = h + 2. The function FE
h+2 clearly satisfies

condition (3.7) at that level. By the inductive assumption and the fact that Q(h) <
pr(jk)/4, condition (3.6) is satisfied with jk replaced by h by all the nonzero terms in the
expansion of gE

h , so that those terms in [gE
h ]2 all have

−4Q(h) ≤ qr(jk) ≤ 2Q(h).

Since 4Q(h) +Q(h+ 2) < 2Q(h+ 2) < pr(jk)/2, the nonzero terms in FE
h+2[g

E
h ]2 all have

−4Q(h)−Q(h+ 2) ≤ qr(jk) ≤ 2Q(h)−Q(h+ 2),

and hence

−2Q(h+ 2) < qr(jk) < −Q(h+ 2)
2

< 0. (3.8)
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These terms satisfy condition (3.7) with j′ = h+ 2, and are indexed by negative integers,
as required. Finally, the doubling process ensures that the nonzero terms in FE

h+2 all have

Q(h+ 2)
2

< qr(jk) ≤ Q(h+ 2).

Then the nonzero terms in FE
h+2F

E
h+2 satisfy

−Q(h+ 2)
2

< qr(jk) <
Q(h+ 2)

2
.

Multiplying by gE
h+1 = gE

h only yields terms with

−2Q(h)− Q(h+ 2)
2

< qr(jk) < Q(h) +
Q(h+ 2)

2
,

and then
−Q(h+ 2) < qr(jk) < Q(h+ 2).

Since each part of gE
h+2 satisfies condition (3.7) with j′ = h + 2, so does gE

h+2. This
completes the proof of the Hardy inequality.
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4. Related results and methods.

It suffices to prove the Paley inequality (1.2) in the case where each of the intervals
(ti, ti+1] used in Section 3 contains at most one term of the sequence (λj). In that case, it
is enough to show that there is a constant C so that

∑
λj≤nr

∣∣∣f̂(λj)
∣∣∣2 ≤ C (‖f‖1)

2 (4.1)

for all r. By the same duality that leads from condition (2.2) to (2.1), it suffices to show
that for each sequence (v(j))∞j=1 of numbers with ‖v‖2 ≤ 1/2 and each positive integer r
there is a function gr satisfying the following conditions. First, ĝr(n) = 0 for all n > nr.
Next,

|ĝr(λj)− v(λj)| ≤ 1
2
|v(λj)| when λj ≤ nr, (4.2)

and ĝr(n) = 0 for all other integers n in the interval [1, nr ]. Finally, gr is again a linear
combination of finitely-many of the functions ψn, and ‖gr‖∞ ≤ 3.

To this end, modify the construction used in the previous section by defining Fi to
be 0 when there is no term of the sequence (λj) in the interval (ti−1, ti] and to be v(j)ψj

when j is the unique index for which λj ∈ (ti−1, ti]. Then ‖Fi‖∞ ≤ 1/2 for all i, and the
construction in the previous section produces a function gr with ‖gr‖∞ ≤ 3 as required.

The analysis of supports of coefficients still applies. It shows that gr satisfies the
conditions specified above, except possibly for (4.2). The part of the detriment with
coefficients in the interval [1, nr] still comes entirely from the terms −4|FE

i |2gE
i−1 and their

counterparts with the superscriptE replaced by O or T . These coefficients of the detriment
can be found exactly using the fact that now |Fi|2 is either 0 or equal to |v(j)|2 for the
appropriate index j. It follows that if λj ∈ E and λj ≤ nr, then

ĝE
r (λj) = v(λj)

∏
λs∈E∩(λj,nr ]

(
1− |v(λs)|2

)
. (4.3)

It also follows that ĝE
r (λj) = 0 if λj /∈ E. Similar conclusions hold when the superscript E

is replaced by O or T . Inequality (4.2) then follows because

∞∏
j=1

(
1− |v(λj)|2

)
≥ exp


− ∞∑

j=1

|v (λj)|2

 ≥ e−1/4.

Functions gr with the properties needed to prove the Paley inequality can also be obtained
by applying [3, Theorem 4] three times, in each case replacing the variables zn there by the
succesive functions ψi as the index i increases through one of the sets E, O, or T . In fact,
that method yields a function gr with condition (4.2) replaced by the sharper requirement
that ĝr(λj) = v(λj) when λj ≤ nr. The method used above can also be adjusted to
produce a function satisfying this sharper version of (4.2).
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To compare inequality (1.2) and inequality (1.4), define a bijection σ between the set
of nonnegative integers and the set of integers by letting σ(k) = n if χk = ψn. It is easy to
check that if (λj)∞j=1 is a Paley sequence, then so is (σ−1(λj))∞j=1. On the other hand, σ
maps each Paley sequence to a sequence whose range is a union of the ranges of a Paley
sequence and the negative of a Paley sequence. So inequality (1.2) holds for all Paley
sequences and all integrable functions with integrable conjugates if and only if the same is
true for inequality (1.4).

Our results and methods apply directly to the H1-space defined using a conjugate
function. When the fully-odd system is multiplicative and of bounded type, thatH1-space
coincides [14] with the one defined using martingales; it seems likely that the same is true
when the fully-odd system is of bounded type but not multiplicative. When the system
is fully-odd but not of bounded type, the conclusions in Theorem 1 do not follow from
the assumption that f belongs to the martingale H1-space. For the first conclusion and
systems that are of multiplicative but unbounded type this is in [5]; in all cases, one can use
the uniform-boundedness principle and the fact that, when the system is not of bounded
type, there are martingale differences with L1-norm equal to 1 for which the left sides of
inequalities (1.1) and (1.2) are as large as one likes. So the martingale version ofH1 differs
from the one defined using a conjugate function when the system is of unbounded type.

Finally, there are H1-spaces defined via atoms as in [11] and [5]. The conclusions
of Theorem 1 hold for functions f in these spaces, because these conclusions follow in a
uniform way for atoms, just as they do on the unit circle. See [5] for a discussion of some
cases of this. It is shown in [11] that the atomic H1-space is included in the one defined
by conjugation when the system of multiplicative type, even when it is not of bounded
type. It seems likely that the same is true when the system is not multiplicative. Many
variants of Hardy and Paley inequalities are considered in [15, Chapter 6] for a large variety
of H1-spaces defined using martingales or atoms.
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