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Abstract

We show that if the coefficients in a multiple trigonometric series tend to 0 and
if their mixed differences are small enough, then the series represents an integrable
function provided that the coefficients in the complex form of the series also satisfy a
symmetry condition. Multiple cosine series automatically satisfy the symmetry condi-
tion. We also show that if the coefficients in a multiple Walsh series tend to 0 and if
their mixed differences are small enough, then the multiple Walsh series represents an
integrable function.

1 Introduction

The condition that we impose on the sizes of mixed differences is strictly weaker than those
that have been considered previously for multiple series. Our use of a symmetry condition
for multiple trigonometric series also seems to be new. The single-variable versions of our
results are known [4, 5, 2, 1]. Our general plan is the same as in [2] and [1], but the presence
of the extra variables leads to new complications.

In this section we present some notation and state our integrability theorems. In Sec-
tion 2, we outline a proof our result on trigonometric series. We complete that proof in
Sections 3 and 4. We prove our theorem for Walsh series in Section 5. In Section 6, we
compare our hypotheses with earlier ones. Finally, in Section 7, we relate our conditions to
other restrictions, on sums of mixed differences, that also imply integrability.

We use the multiindex notation as in [15]. The symbol K denotes an integer that is
greater than 1, and lower-case letters near the beginning of the Greek alphabet denote
lists, like (αk)

K
k=1, of K integers. The symbols Z and Z+ denote the sets of integers and

nonnegative integers respectively. We write β ≥ 0 if β ∈ ZK
+ , and γ ≥ α if γ − α ≥ 0. We

write β > 0 if βk > 0 for all k; this is a stronger restriction than merely requiring that β ≥ 0
and β 6= 0.

We mostly use lower-case letters near the end of the Roman alphabet to denote lists,
like (tk)

K
k=1 of numbers in the real interval [−1/2, 1/2). One exception to this is that we use

the symbol z to denote the mapping

t 7→ z(t) ≡ (zk(t))
K
k=1 ≡ (e2πitk)K

k=1

1Research partially supported by NSERC grant number 4822.
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of the set X ≡ [−1/2, 1/2)K onto the set TK of lists of complex numbers of modulus 1. By
convention,

zα(t) =
K∏

k=1

zk(t)
αk .

The symbol m denotes Lebesgue measure on X, and Lp denotes the usual space of equivalence
classes of measurable functions on (X,m). The functions zα form a complete orthonormal
system in L2(X,m). Every function f in L1 has Fourier coefficients given by

f̂(α) =
∫

X
f(t)z−α(t)dm(t).

We say that a series, in the complex form∑
α∈ZK

c(α)zα, (1.1)

represents an integrable function, or simply that the series is integrable, if there is an f in L1

so that c(α) = f̂(α) for all α in ZK.
By Riemann-Lebesgue, c(α) then tends to 0. There are many ways to see that this is not

sufficient for integrability. Since conditions on the smoothness of a distribution corresponds
to conditions on the size of the transform of the distribution, it is reasonable to expect that
if the coefficients in a series tend to 0 and have small enough differences, then the series will
be integrable.

We work with mixtures of differences in all directions. For each index k with 1 ≤ k ≤ K,
let

∆kc(α) = c(α) − c(α1, . . . , αk−1, αk + 1, αk+1, . . . , αK),

be the usual forward difference with respect to the k-th component. The operators ∆k

commute; let ∆ =
∏K

k=1 ∆k. When K = 2 for instance,

∆c(3, 5) = c(4, 6)− c(4, 5)− c(3, 6) + c(3, 5).

The condition that we impose on the sizes of the quantities ∆c(α) involves amalgams [8]
of `1-norms and `2-norms. For each positive integer m, let J(m) be the set of integers in
the interval [−2m−1, 2m−1); it should be clear from the context whether we intend m to be
an integer or Lebesgue measure. Given a multiindex β in ZK

+ , let J(β) be the cartesian
product of the sets J(βk). Also let 2β be the multiindex with components 2βk . Given two
multiindices α and γ, denote the multiindex with components αkγk by αγ. For each β in ZK

+ ,
the sets J(β) + γ2β with γ in ZK are disjoint and cover ZK.

Given a function d on ZK, let ‖d‖1,2,2β be the quantity obtained by combining norms as
follows. First compute the `1-norm of the restriction of d to each set J(β)+ γ2β. This norm
depends on the choice of γ, and hence defines a function on ZK. Then compute the `2-norm
of that function. Suppose for instance that K = 2 and β = (3, 4). Then

‖d‖1,2,2β =


∞∑

i=−∞

∞∑
j=−∞

 i23+22−1∑
m=i23−22

j24+23−1∑
n=j24−23

|d(m,n)|
2


1/2

. (1.2)
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Call a set J(β)+γ2β a middle translate if some component of γ is equal to 0; this is equivalent
to the set J(β)+γ2β having a member with some component equal to 0. Let ‖d‖′1,2,2β denote
the quantity obtained by proceeding as in the definition of ‖d‖1,2,2β but omitting the middle
translates. In (1.2), for instance, this means omitting the terms in the sums where one or
both of the indices i and j are equal to 0. Then let

‖c‖∆ ≡ ∑
β≥0

‖∆c‖′1,2,2β . (1.3)

Definition 1.1 Call a function, c say, on ZK regular if it tends to 0 and has the property
that ‖c‖∆ < ∞.

The quantity ‖∆c‖′1,2,2β is only affected by the sizes of the difference ∆c outside the

union of the middle translates corresponding to 2β. For each multiindex α there are only
finitely many values of β for which α lies outside this union of middle translates. Because of
this, there are nontrivial regular sequences, including radial ones of the form g(

∑
k∈I(αk)

2),
where g is any function on [0,∞) that tends to 0 and has derivatives that tend to 0 rapidly
enough.

We begin our description of the symmetry condition that we use by recalling two formu-
lations of it for single-variable series. It is shown in [2] that a series

∞∑
n=−∞

c(n)zn (1.4)

with regular coefficients is integrable if and only if

∞∑
m=0

|c(2m)− c(−2m)| < ∞. (1.5)

In this case, regularity implies that the sequence (c(n)) has bounded variation, and then
condition (1.5) is equivalent to other conditions like

∞∑
n=1

|c(n)− c(−n)|
n

< ∞. (1.6)

For multiple series, our symmetry condition is a a family of regularity conditions on
various new sequences obtained from the original sequence by combining some components
in an antisymmetric way. If c is fully even in the sense that c(α) is not affected if αk is
replaced by −αk for any k, then these new sequences are all 0, and c automatically satisfies
the symmetry condition. Given integers n and k with k in the set I ≡ {1, . . . ,K}, consider
the restriction of the function c to the set of multiindices α with αk = n. Identify this
function in the obvious way with a function, c(k,n) say, on ZK−1, and use the complement
of {k} in I to index ZK−1 in this case. Then form the difference

σ(k,n)c = c(k,n) − c(k,−n).

When K = 2, for instance the function c can be represented by a doubly infinite matrix,
and σ(1,n)c is then the row vector obtained by subtracting row −n of the matrix from row n.
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In contrast, σ(2,n)c is then the column vector equal to the difference between columns n
and −n in the matrix.

Products of these operators σ(k,n) with distinct indices k are well defined, and the oper-
ators commute. When K = 2, applying both of the operators σ(1,3) and σ(2,5) to c, in either
order, yields the constant

c(3, 5)− c(−3, 5)− c(3,−5) + c(−3,−5). (1.7)

Given a nonempty subset S of I and a multiindex γ in ZS, let

σ[S,γ]c ≡
∏

k∈S

σ(k,γk)

 c. (1.8)

Use |S| to denote the cardinality of S; then σ[S,γ]c has K − |S| components. When |S| < K,
define the functional ‖·‖∆ on sequences on ZK−|S| as before, except for replacing K by K−|S|.
If |S| = K, then σ[S,γ]c is a constant, as in (1.7); in this case, define ‖σ[S,γ]c‖∆ to be the
absolute value of σ[S,γ]c.

Definition 1.2 Call a function, c say, on ZK sufficiently symmetric if

‖c‖Σ ≡
∑
|S|>0

∑
β∈ZS

+

‖σ[S,2β]c‖∆ < ∞. (1.9)

In Section 4, we will explain why this is equivalent, for regular sequences c, to either
of the following conditions. First, we can then replace 2β by (qk(βk))k∈S , where each se-
quence (qk(j))

∞
j=0 takes its values in the set of positive integers and has the property that

there are constants C1 and C2, with C1 > 1 so that

C1qk(j) ≤ qk(j + 1) ≤ C2qk(j) (1.10)

for all j. Second, we can use all the multiindices that have all positive components, rather
than just using those of the form 2β. Indeed, let P denote the set of positive integers, and
given γ in P S, let |[γ]| = ∏

k∈S |γk|. We then require that

∑
|S|>0

∑
γ∈P S

‖σ[S,γ]c‖∆

|[γ]| < ∞. (1.11)

It is also the case that ‖c‖∆ < ∞ if and only if

∑
γ>0

‖∆c‖′1,2,γ

|[γ]| < ∞; (1.12)

here one must also make appropriate modifications to the definitions of the sets J(β).

Theorem 1.1 If the coefficients in the complex form of a multiple trigonometric series form
a sequence that is regular and sufficiently symmetric, then the series represents an integrable
function.
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In particular, regularity implies integrability for series with fully even coefficients. These
are the series (1.1) that can be rewritten as multiple cosine series in the form∑

α≥0

a(α) cos(α1t1) . . . cos(αKtK) (1.13)

Let N(α) be the number of components of α that differ from 0. Then a(α) = 2N(α)c(α) for
all α ≥ 0. In this situation, define ‖a‖′1,2,2β to be the quantity obtained by proceeding as

before except for only using the translates J(β) + γ2β with γ > 0, because these translates
are the ones that are included in ZK

+ , the domain of a. Then define ‖a‖∆ as in (1.3). Say
that a is weakly regular if it tends to 0 and ‖a‖∆ < ∞. This only restricts the sizes of
the differences ∆a in the interior of ZK

+ , that is on the set of multiindices in ZK
+ with no

component equal to 0.
Since a(α) = 2Kc(α) on this set of interior multiindices, it follows that ‖a‖∆ < ∞

if ‖c‖∆ < ∞. Given a subset S of I, let cS be the restriction of the function c to the set
of multiindices α in ZK with αk = 0 for all k in S; regard cS as a function on ZK−|S|.
We will see in Section 4 that regularity of c on ZK implies that all the functions c(k,n) are
regular on ZK−1. Iterating this shows that all the functions cS must then be regular on their
domains.

Definition 1.3 Call a function, a say, on ZK
+ regular if a is weakly regular on ZK

+ and each
of the functions aS is weakly regular on its domain.

As the discussion before the definition suggests, it turns out that a is regular on ZK
+ if

and only if there is a fully even, regular function c on ZK with a(α) = 2N(α)c(α) for all α
in ZK

+ . So the case of Theorem 1.1 where the coefficients are fully even is equivalent to the
following statement.

Theorem 1.2 If the coefficients in a multiple cosine series form a regular sequence, then
the series represents an integrable function.

Multiple sine series ∑
α>0

b(α) sin(α1t1) . . . sin(αKtK) (1.14)

have complex forms (1.1) in which the coefficients (c(α)) are fully odd in the sense that
they are odd in each component. In particular, c(α) = 0 whenever α has some component
equal to 0, and b(α) = (2i)Kc(α) for all α in PK . Sufficient symmetry of the sequence c
corresponds to a combination of conditions on the restrictions of the sequence b to certain
subsets of PK . Given an integer k with 1 ≤ k ≤ K and a positive integer n, define a new
sequence b(k,n) much as before, except that its domain is now identified with PK−1 indexed
by the complement of {k} in I, rather than being identified with ZK−1. Let ρ(k,n) be the
operator that maps the sequence b to the sequence b(k,n), and let

ρ[S,γ]b ≡
∏

k∈S

ρ(k,γk)

 b. (1.15)

whenever S is a subset of I and γ ∈ P S. Define quantities ‖ρ[S,γ]b‖∆ by restricting all
calculations to PK−|S|.
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Definition 1.4 Call a sequence (b(α))α∈P K strongly regular if it is weakly regular, and

‖b‖Σ ≡
∑
|S|>0

∑
β∈ZS

+

‖ρ[S,2β]b‖∆ < ∞. (1.16)

Again, it is equivalent to require that the weakly regular sequence b have the property
that ∑

|S|>0

∑
γ∈P S

‖ρ[S,γ]b‖∆

|[γ]| < ∞. (1.17)

The case of Theorem 1.1 where the coefficients are fully odd is equivalent to the following
statement.

Theorem 1.3 If the coefficients in a multiple sine series form a sequence that is strongly
regular, then the series represents an integrable function.

The counterparts of Theorems 1.2 and 1.3 for single-variable series were proved in [4], [5],
and [2]. For such sine series with regular coefficients the symmetry condition is also neces-
sary [5, 2] for integrability. In Section 7, we will explain why we doubt that this extends to
multiple series. In Section 4, we will complete the subdivision of Theorem 1.1 into special
cases by dealing with multiple trigonometric series having real forms with terms

d(α)

∏
k∈S

cos(2παktk)

 ∏
k/∈S

sin(2παktk)

 (1.18)

where S is a fixed proper subset of I.
Another complete orthonormal system on (X,m) consists of tensor products of Walsh

functions. The single-variable Walsh system is often indexed by Z+, in the Paley order-
ing [16]. This leads to an indexing of the set of tensor products of Walsh functions as (wα)α≥0.

Theorem 1.4 If the coefficients in a multiple Walsh series form a regular sequence, then
the series represents an integrable function.

Our proof of this is simpler than our proof of Theorem 1.1. Since many of the same issues
arise in both cases, the reader who is familiar with Walsh series may wish to turn next to
Section 5 to see how we deal with these issues for multiple Walsh series, and then read the
proof, in Sections 2–4, for multiple trigonometric series.

2 Outline of the proof for multiple trigonometric series

In this section, we offer a formal argument that reduces the proof of Theorem 1.1 to a
sequence of lemmas that we will prove in Section 3. We will justify the formal argument in
Section 4.

We follow the plan that we used [2] for single-variable series, but the extra variables here
make some steps more complicated, and we have to deal with combinations that do not arise
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in the case of single-variable series. Given a series in the complex form (1.1) with regular
coefficients, we multiply it formally by

h(t) =
K∏

k=1

[1− e−2πitk]. (2.1)

This yields the series ∑
α∈ZK

∆c(α)zα(t). (2.2)

We will show in Section 4 that
‖∆c‖1 ≤ C‖c‖∆. (2.3)

Thus the series (2.2) converges absolutely, to f(t) say. So, at least formally, integrability of
the series (1.1) is equivalent to integrability of the function F that maps t to f(t)/h(t).

When tk ∈ [−1/2, 1/2), the absolute-value of [1 − e−2πitk] lies between 4|tk| and 2π|tk|.
Hence integrability of the series (1.1) is formally equivalent to that of the function f with
respect to the measure w(t) dt where

w(t) =
1∏K

k=1 |tk|
. (2.4)

To deal with this weighted integrability question, we split the domain into pieces where w(t)
is nearly constant. For each nonnegative integer m, let E(m) be the set of real numbers with
absolute values lying in the interval (1/2m+2, 1/2m+1]. Given a multiindex β in ZK

+ , let E(β)
be the cartesian product of the sets E(βk).

We follow the standard convention concerning notation for averages of integrable func-
tions over measurable sets with positive measure. If G is such a function on X and E is such
a subset of X, let

GE =
1

m(E)

∫
E

Gdm

Denote
∑K

k=1 |βk| by |β|. The set E(β) has measure 2−|β|−K. On it, the values taken by w(t)
all lie between 2|β|+K and 2|β|+2K. So the function f is integrable with respect to the weight w
if and only if ∑

β≥0

|f |E(β) < ∞. (2.5)

Most of the analysis in this section will focus on this condition and variants of it.
Given a multiindex β in ZK

+ and a subset R of I, let W (R, β) be the set of all multi-
indices α for which αk ∈ [−2βk , 2βk) if k ∈ R, and αk /∈ [−2βk , 2βk) if k /∈ R. Then let fβ,R(t)
be the sum of the terms in the series (2.2) for which α ∈ W (R, β). Since the series (2.2)
converges absolutely, so do the partial series fβ,R(t), and

f(t) =
∑
R⊂I

fβ,R(t). (2.6)

This splits f into 2K pieces tailored to β. We also denote fβ,I by sβ, and fβ,∅ by Tβ , and we
call these pieces the inner and outer sums respectively. They are the only pieces that arise
when K = 1.
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The Fourier coefficients of Tβ are equal to the coefficients in the series defining Tβ because

that series converges absolutely. So T̂β vanishes on the union of the middle translates of J(β),

and on its support T̂β coincides with ∆c. Hence

‖T̂β‖1,2,2β ≤ ‖∆c‖′1,2,2β . (2.7)

This allows us to estimate certain L2-averages.

Lemma 2.1 There is a constant C so that, for any integrable function G and any multiin-
dex β in ZK

+ , {[
|G|2

]
E(β)

}1/2

≤ C‖Ĝ‖1,2,2β . (2.8)

We will prove this in Section 3. We note here that

|G|E(β) ≤
{[
|G|2

]
E(β)

}1/2

,

by Cauchy-Schwarz. Combining this with inequalities (2.8) and (2.7) yields that∑
β≥0

|Tβ |E(β) ≤ C‖c‖∆. (2.9)

We work with modifications of the functions fβ,R when |R| > 0. Given such a set R and
the function f , we form a new function fR by setting tk = 0 for all k in R. When K = 3 for
instance,

f{1,3}(t) = f(0, t2, 0).

In contrast to our policy for the functions cS, we initially regard fR as a function on the
interval [−1/2, 1/2)K, although the value of fR at t does not change if we change the values
of tk with k in R. We let f∅ = f . We then form the combination

f (R) ≡ ∑
S⊂R

(−1)|S|fS. (2.10)

When K = 2,
f ({1,2})(t) = f(t1, t2)− f(0, t2) − f(t1, 0) + f(0, 0).

We use notation like fR
β,R for what we should, strictly speaking, denote by (fβ,R)R. Given a

set E, we denote its indicator function by 1E.

Lemma 2.2 There is a constant C so that∑
β≥0

∥∥∥s(I)
β · 1E(β)

∥∥∥∞ ≤ C‖∆c‖1. (2.11)

It follows that ∑
β≥0

∣∣∣s(I)
β

∣∣∣
E(β)

≤ C‖∆c‖1. (2.12)

There are estimates for mixtures of suprema and L2-norms for functions derived from
the intermediate pieces fβ,R, and these lead to estimates for L2-averages.
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Lemma 2.3 There is a constant C so that

∑
β≥0

{[∣∣∣f (R)
β,R

∣∣∣2]
E(β)

}1/2

≤ C‖c‖∆ (2.13)

for all proper subsets R of I.

Therefore, ∑
0<|R|<K

∑
β≥0

∣∣∣f (R)
β,R

∣∣∣
E(β)

≤ 2KC‖c‖∆. (2.14)

Combining inequalities (2.9), (2.12), (2.3), and (2.14) yields that if c is regular then∑
β≥0

∑
R⊂I

∣∣∣f (R)
β,R

∣∣∣
E(β)

≤ C ′‖c‖∆. (2.15)

As in the discussion around (2.5), this means that the function f̃ that is defined to coincide

with
∑

R⊂I f
(R)
β,R on each of the sets E(β) is integrable with respect to the weight w. Thus the

issue of integrability for a series with regular coefficients reduces to the question of weighted
integrability for the difference f − f̃ .

We will see that this difference is essentially a sum of functions each of which depends
locally on fewer than K variables. So the regularity hypothesis in Theorem 1.1 allows us to
reduce the integrability question to similar questions about functions of fewer variables. The
symmetry hypothesis will allow us to show that these functions are integrable with respect
to appropriate weights.

The decomposition (2.6) came from splitting f̂ into pieces supported by disjoint subsets
of ZK. In the analysis that follows, it seems better to work with sets that overlap, and then
use the inclusion-exclusion principle. Given a multiindex β ≥ 0 and a nonempty subset R
of I, let Q(R, β) be the set of multiindices α for which αk ∈ [−2βk , 2βk) for all k in R.
Let fQ(R,β)(t) be the sum of the terms in the series (2.2) for which α ∈ Q(R, β). In contrast
to the definition of fβ,R, there is no restriction here on the indices αk for which k /∈ R. By
the inclusion-exclusion principle,

fβ,R =
∑

U⊃R

(−1)|U |−|R|fQ(U,β).

So ∑
R⊂I

f
(R)
β,R =

∑
R⊂I

∑
S⊂R

(−1)|S|
∑
U⊃R

(−1)|U |−|R|fS
Q(U,β).

On the set E(β), the function f̃ coincides with this expansion, and the function f coincides
with the sum of the terms in it with S = ∅. To expand the difference f̃ − f , remove the
terms where S = ∅, and change the order to summation to get∑

U⊂I

(−1)|U |
∑

∅6=S⊂U

(−1)|S|fS
Q(U,β)

∑
S⊂R⊂U

(−1)−|R|.

The inner sum vanishes unless S = U , so that on the set E(β)

f̃ − f =
∑

∅6=S⊂I

(−1)|S|fS
Q(S,β). (2.16)
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To show that f̃ − f is integrable with respect to the weight w, we show that∑
β≥0

∣∣∣fS
Q(S,β)

∣∣∣
E(β)

< ∞ (2.17)

whenever S is a nonempty subset of I.
By symmetry, it is sufficient to do this when S has the form {M + 1, . . . ,K} for some

integer M < K. Then the quantity fS
Q(S,β)(t) does not depend on the components tk

with k > M , because it is computed by setting these components equal to 0. On the other
hand, only the components βk with k > M matter in defining the set Q(S, β) and the func-
tion fS

Q(S,β). To exploit these patterns, we write β = (µ, ν), where µ ∈ ZM
+ and ν ∈ ZK−M

+ ,

and we split t in a similar way as (u, v), with u in [−1/2, 1/2)M and v in [−1/2, 1/2)K−M.
We write u = Pt and ν = Rβ in these cases.

Now define a function h(ν) on [−1/2, 1/2)M by letting

h(ν)(u) = fS
Q(S,(0,ν))((u, 0));

as noted above, this is also equal to fS
Q(S,β)(t) whenever Pt = u and Rβ = ν. Moreover,

applying this definition to the absolutely convergent series (2.2) yields that

h(ν)(u) =
∑

λ∈ZM

τ[S,2ν ](λ)zλ(u), (2.18)

where
τ[S,2ν ]c(λ) ≡ ∑

−2ν≤η<2ν

∆c(λ, η). (2.19)

and zλ(u) ≡ ∏M
k=1 zk(uk)

λk . Denote the set {1, . . . ,M} by U , and factor the operator ∆ as ∏
k∈U

∆k

 ∏
k∈S

∆k

 = ∆U∆S,

say. Use this in (2.19) to get that

τ[S,2ν ]c(λ) = ∆U

∑
−2ν≤η<2ν

∆Sc(λ, η). (2.20)

Because the way that the terms in it are mixed differences, the sum in (2.20) collapses
to σ[S,2ν ](λ). Therefore

h(ν)(u) =
∑

λ∈ZM

∆U

{
σ[S,2ν]c

}
(λ)zλ(u). (2.21)

This series is related to ∑
λ∈ZM

σ[S,2ν ]c(λ)zλ(u) (2.22)

in the same way that (2.2) is related to (1.1). The hypothesis that the sequence c is sufficiently
symmetric ensures that the coefficients in (2.22) are regular. It also guarantees that they are
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sufficiently symmetric since applying further antisymmetrizing operators σ(k,n) with k ≤ M
to these coefficients just yields sequences σ[V,γ]c for sets V that strictly include S.

Because fS
Q(S,β)(t) does not depend on the last K−M components of t, and because fS

Q(S,β)

projects to h(ν) and E(β) projects to E(µ), the averages |fS
Q(S,β)|E(β) and |h(ν)|E(µ) are equal.

So ∑
β≥0

∣∣∣fS
Q(S,β)

∣∣∣
E(β)

=
∑
ν≥0

∑
µ≥0

|hν |E(µ). (2.23)

We will prove inequality (2.5) by showing that there is an absolute constant CK so that∑
β≥0

|f |E(β) ≤ CK (‖c‖∆ + ‖c‖Σ) , (2.24)

whenever the function f and the sequence c are related as specified at the beginning of this
section. If we had already proved inequality (2.5) in some other way, then it would follow
from the closed-graph theorem that there must be a constant CK with this property.

We verify (2.24) by induction on K. The case where K = 1 is proved, by some of the
methods in this paper, in [2]. Assume that the counterparts of the inequality holds in all
dimensions less than K. Applying this assumption to the series (2.22) yields that the inner
sum on the right side of (2.23) is bounded above by

CK−|S|
(
‖σ[S,2ν]c‖∆ + ‖σ[S,2ν ]c‖Σ

)
.

So the left side of (2.23) is bounded above by

CK−|S|
∑
ν≥0

(
‖σ[S,2ν ]c‖∆ + ‖σ[S,2ν ]c‖Σ

)
. (2.25)

By the comments about the regularity and sufficient symmetry of the sequence of coefficients
in (2.22), the quantity (2.25) is bounded above by C ′‖c‖Σ. Combining these bounds for all
nonempty subsets S of I, and using inequality (2.15) yields inequality (2.24).

3 Proofs of the lemmas

We postpone the proof of Lemma 2.1 until the end of this section, because it uses the same
ideas as the proof of its single-variable counterpart in [2], and we do not need these ideas to
prove the other lemmas. We will reuse the ideas in the proof of Lemma 2.2, and we begin
with it.

Given a point t in the set X, let Dt be the set of all points, r say, in X for which rk lies
between 0 and tk for all k. Then s

(I)
β (t) is equal to the integral over the set Dt of the mixed

partial derivative obtained by differentiating sβ once with respect to each component. On
this set, the absolute value of this mixed partial derivative is bounded above by

∑
α∈W (I,β)

|∆c(α)|
K∏

k=1

|2παk| .

11



Since the set Dt has measure less than 2−|β|−K for all t in E(β),∥∥∥s(I)
β · 1E(β)

∥∥∥∞ ≤ (2π)K2−|β|−K
∑

α∈W (I,β)

|∆c(α)| |[α]|. (3.1)

It follows that

∑
β≥0

∥∥∥s(I)
β · 1E(β)

∥∥∥∞ ≤ πK
∑

α∈ZK

 ∑
α∈W (I,β)

2−|β|
 |[α]| |∆c(α)|. (3.2)

Fix α in ZK. Among the multiindices β in ZK
+ with the property that α ∈ W (I, β) there is

a unique one, β(α) say, for which 2|β| is minimal. Then |[α]| ≤ 2|β(α)|, and α ∈ W (I, γ) if
and only if γ ≥ β(α). So in (3.2) the term |∆c(α)| is multiplied by no more than

2|β(α)| ∑
γ≥β(α)

2−|γ| =
∑
γ≥0

2−|γ|. (3.3)

The sum on the right is equal to (
∑∞

j=0 2−j)K = 2K. Hence the right side of (3.2) is majorized
by (2π)K‖∆c‖1. This completes the proof of Lemma 2.2.

We prove Lemma 2.3 by combining the methods in the proof of Lemma 2.2 with the
validity of Lemma 2.1 for series in fewer variables. Suppose again that the set S has the
form {M + 1, . . . , K} for some integer M < K. Again split multiindices β in ZK

+ as (µ, ν)
and points t in X as (u, v). Recall that the function fβ,S was defined via a set W (S, β) of mul-
tiindices in ZK

+ . Given α in W (S, β), split it as (ζ, η). Then ζ ∈ W (∅, µ), and η ∈ W (S, ν).

This allows us to rewrite the series for f
(S)
β,S(u, v) as

∑
ζ∈W (∅,µ)

 ∑
η∈W (S,ν)

∆c(ζ, η)[zη ](S)(v)

 zζ(u). (3.4)

For fixed v, this becomes an outer sum, T (v,ν)
µ (u) say, for a series in M variables. Lemma 2.1

applies to this sum, and yields useful estimates provided that we can control the sizes of the
coefficients of T (v,ν)

µ . We only need such estimates when (u, v) ∈ E(β), and then the methods
in the proof of Lemma 2.2 show that∣∣∣∣∣∣

∑
η∈W (S,ν)

∆c(ζ, η)[zη ](S)(v)

∣∣∣∣∣∣ ≤
∑

η∈W (S,ν)

|∆c(ζ, η)|2−|ν|π|S||[η]|. (3.5)

Note that this upper bound is uniform in v.
In the sum on the right in (3.5), there is actually no contribution from the terms where

some component of η vanishes, because then |[η]| = 0. Every other index η in the sum
belongs to some principal translate of the form J(δ) + θ2δ, where δ and θ belong to ZS

+

and ZS respectively, with δ < ν and each component of θ equal to ±1. Consider the part

d
(ν)
δ,θ (ζ) ≡ π|S|2−|ν|

∑
η∈[J(δ)+θ2δ]

|∆c(ζ, η)||[η]|, (3.6)
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of the sum (3.5), corresponding to one such principal translate. For the indices η in (3.6),

the factor |[η]| is at most 2|δ|+|S|. So the `1-norm of d
(ν)
δ,θ on the set J(2µ) + ξ2µ is bounded

above by

π|S|2−|ν−δ|+|S| ∑
ζ∈[J(2µ)+ξ2µ]

∑
η∈[J(δ)+θ2δ]

|∆c(ζ, η)| , (3.7)

which is equal to (2π)|S|2−|ν−δ| times the `1-norm of the restriction of the sequence ∆c on
the set J((µ, δ)) + (ξ, θ)2(µ, δ).

If no component of ξ vanishes, then this set is not a middle translate of J((µ, δ)), and it
is included in the computation of ‖∆c‖1,2,2(µ,δ). Squaring the estimate (3.7) and adding over
all indices ξ in ZM with no vanishing components yields that

‖d(ν)
δ,θ ‖′1,2,2µ ≤ (2π)|S|2−|ν−δ|‖∆c‖′1,2,2(µ,δ).

Form another sequence d
(ν)
δ by adding together all the sequences d

(ν)
δ,θ with each component

of θ equal to ±1. Then

‖d(ν)
δ ‖′1,2,2µ ≤ 2|S|(2π)|S|2−|ν−δ|‖∆c‖′1,2,2(µ,δ).

Summing these estimates over all choices of δ with δ ≤ ν provides the upper bound

(4π)|S|
∑

0≤δ≤ν

2−|ν−δ|‖∆c‖′1,2,2(µ,δ)

for the value of the functional ‖ · ‖′1,2,2µ applied to the coefficients of T (v,ν)
µ . Since these

coefficients vanish on the middle translates of J(µ), we can use ‖ · ‖′1,2,2µ and ‖ · ‖1,2,2µ

interchangeably here.
By Lemma 2.1 in M variables,

{[∣∣∣T (v,ν)
µ

∣∣∣2]
E(µ)

}1/2

≤ CM(4π)|S|
∑

0≤δ≤ν

2−|ν−δ|‖∆c‖′1,2,2(µ,δ).

This holds uniformly in v, and so also gives an upper bound for

{[∣∣∣f (S)
β,S

∣∣∣2]
E(β)

}1/2

.

Adding these bounds for all β = (µ, ν) ≥ 0 gives no more than

CM(4π)|S|
∑
µ≥0

∑
δ≥0

‖∆c‖′1,2,2(µ,δ)

∑
ν≥δ

2−|ν−δ|. (3.8)

As in the proof of Lemma 2.2, the inner sum in (3.8) is equal to 2|S|, so that the triple
sum (3.8) is equal to

CM(8π)|S|‖c‖∆.

This completes the proof of Lemma 2.3.
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We have two proofs of Lemma 2.1, one using known estimates for Fourier transforms
on RK, and one that is more self-contained. We begin both proofs by rewriting the lemma
in the form stating that

‖G · 1E(β)‖2 ≤ Cm(E(β))1/2‖Ĝ‖1,2,2β (3.9)

for all integrable functions G on the set X. By duality, this is equivalent to the assertion
that

‖Ĥ‖∞,2,2β ≤ Cm(E(β))1/2‖H‖2 (3.10)

for all integrable functions H that vanish off the set E(β). The functional ‖ · ‖∞,2,2β is
computed like ‖ · ‖1,2,2β except that that the first step is to take `∞-norms over various
translates of the set J(β) rather `1-norms.

Extend H to all of RK by making it identically 0 off X. Then (3.10) follows from the
validity of the corresponding estimate for ‖Ĥ‖∞,2,2β for all integrable functions H on RK

with the property that H vanishes off E(β). Now the symbol ˆ denotes the Fourier trans-
form on RK, and ‖Ĥ‖∞,2,2β is computed using a cover of RK by disjoint translates of the
set

∏K
k=1[−2βk−1, 2βk−1). Let γ̄ be the multiindex with all components equal to 1. Changing

variables appropriately reduces matters to showing that

‖Ĥ‖∞,2,γ̄ ≤ C‖H‖2 (3.11)

for all integrable functions H on RK that vanish off the set X. This inequality is known [6],
and has been proved in various ways [8] as a cornerstone for the Hausdorff-Young theorem
for amalgams.

To prove inequality (3.9) more directly, we split the set E(β) as a union of 2K disjoint
translates of the set, D(β) say, consisting of all points t in X with −2βk−3 ≤ tk < 2βk−3.
Since translating a function does not change the absolute values of its Fourier coefficients,
it suffices to prove a version of inequality (3.9) with E(β) replaced by D(β). Consider the
function

g = 2−|β|
∑

α∈J(β)

zα.

Then the real part of g(t) is bounded below by (1/
√

2)K for all t in D(β). So

‖G · 1D(β)‖2 ≤ 2K/2‖G · g‖2 = 2K/2‖Ĝ ∗ ĝ‖2,

where ∗ denotes convolution on ZK.
Now split Ĝ into pieces, Pγ say, supported by the various sets J(β) + γ2β that are

considered in computing ‖Ĝ‖1,2,2β . By Young’s inequality for convolution,

‖ĝ ∗ Pγ‖2 ≤ ‖ĝ‖2‖Pγ‖1 = 2−|β|/2‖Pγ‖1.

It may happen that the various functions ĝ ∗Pγ have disjoint supports. In that special case,

(‖ĝ ∗ Ĝ‖2)
2 =

∑
γ∈ZK

(‖ĝ ∗ Pγ‖2)
2 ≤ ∑

γ∈ZK

2−|β|(‖Pγ‖1)
2. (3.12)
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The right side of (3.12) is just 2−|β|(‖Ĝ‖1,2,2β)2. So

‖G · 1D(β)‖2 ≤ 2(K−|β|)/2‖Ĝ‖1,2,2β (3.13)

in this case. This matches the pattern in (3.9) because

m(D(β)) = 2−2K−|β|.

The functions ĝ ∗ Pγ will have disjoint support if Pγ ≡ 0 for all choices of γ outside a

particular coset of the subgroup (2Z)K in ZK. In general, just split Ĝ into 2K parts, for
each of which the corresponding functions Pγ have this vanishing property outside one of
the cosets of (2Z)K, and apply inequality (3.13) to each part of G.

4 Conditions on individual differences

We show first that if c is regular on ZK, then ∆c ∈ `1. The `1-norm of the restriction of ∆c to
each principal translate of J(β) is bounded above by ‖∆c‖′1,2,2β . By the Schwarz inequality,

the `1-norm of the restriction of ∆c to the union of all the principal translates of J(β) is
at most 2K/2‖∆c‖′1,2,2β . As β varies, these translates cover the set of interior multiindices

in ZK. So we get the upper bound 2K/2‖c‖∆ for the `1-norm of the restriction of ∆c to the
set of interior multiindices.

The fact that c tends to 0 then enables us to estimate the `1-norm of ∆c on the rest
of ZK. When K = 2 for instance, we have that

∞∑
i=−∞

∆c(i, j) = 0 (4.1)

for all j, and similarly for sums with i fixed and j varying. Hence,

|∆c(0, j)| ≤ ∑
i6=0

|∆c(i, j)|.

It then follows that ∑
j 6=0

|∆c(0, j)| ≤ ∑
i6=0

∑
j 6=0

|∆c(i, j)| ≤ 22/2‖c‖∆,

and similarly for
∑

i6=0 |∆c(i, 0)|. Finally,

|∆c(0, 0)| ≤ ∑
i6=0

|∆c(i, 0)|.

Next we show that the functions cS must all be regular. Again let K = 2 for simplicity.
Since ∆c ∈ `1, the series (4.1) converges absolutely; moreover,

c(0, j)− c(0, j + 1) =
−1∑

i=−∞
∆c(i, j) (4.2)
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for all j. Given a nonnegative integer m, let dm(j) be the part of this sum where

i ∈ [−2m − 2m−1,−2m + 2m−1),

and estimate as in the proof of Lemma 2.3. Let r be a nonnegative integer and s be an
integer. Then

s2r+2r−1−1∑
j=s2r−2r−1

|dm(j)| ≤
s2r+2r−1−1∑
j=s2r−2r−1

−2m+2m−1−1∑
i=−2m−2m−1

|∆c(i, j)|.

Square both sides of this inequality, and add as the index s runs through the set of nonzero
integers to get that

‖dm‖′1,2,2r ≤ ‖∆c‖′1,2,2(m,r).

Therefore ∑
r≥0

‖dm‖′1,2,2r ≤
∑
r≥0

‖∆c‖′1,2,2(m,r).

Finally,
‖c{1}‖∆ ≤ ∑

m≥0

∑
r≥0

‖dm‖′1,2,2r ≤
∑
m≥0

∑
r≥0

‖∆c‖′1,2,2(m,r) = ‖c‖∆.

Similar arguments show that all slices of a regular sequence are regular, and that slices of
weakly regular sequences on ZK

+ are weakly regular.
It may appear at first sight that only symmetry is needed to verify that multiple cosine

series with regular coefficients have complex form with regular coefficients. There is an asym-
metry in the definition of ∆c, however, and this is one reason for assuming in Theorem 1.2
that various slices aS are weakly regular. For a fully even sequence c on Z2 for instance,

∆c(−1, n) = c(0, n)− c(1, n). (4.3)

If the sequence c is related to the sequence a on Z2
+ as in the discussion leading up to the

statement of Theorem 1.2, then the contributions of the differences (4.3) to ‖c‖∆ can be
estimated using the weak regularity of the slices a1,0 and a1,1.

Given a sequence d on ZK, also denote the quantity
∑

β≥0 ‖d‖′1,2,2β by ‖d‖′. Our analysis
actually shows that

‖c{1}‖∆ ≤ ‖(∆c) · 1H‖′, (4.4)

where H is the left half of Z2 consisting of all multiindices with negative first components.
In the same way, if 0 < m < n and S(m,n) is the strip in Z2 where m ≤ α1 < n, then

‖c{n} − c{m}‖∆ ≤ ‖(∆c) · 1S(m,n)‖′, (4.5)

and similar estimates hold for pairs of negative integers m and n.
Call a sequence (q(j))∞j=0 of positive integers a Paley sequence if it can be split into

finitely-many subsequences each of which satisfies the counterpart of condition (1.10) with
constants C2 and C1 > 1. Another characterization of Paley sequences is the fact [14] that
for each of them there is a constant C so that the sequence has at most C terms in each
interval [2m, 2m+1). It follows from (4.5) that if c is regular on Z2, then

∞∑
j=0

‖σ[1,q(j)]c‖∆ < ∞ (4.6)
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for one such sequence q if and only (4.6) is true for all Paley sequences q. Similar statements
hold on ZK when K > 2. So we can safely replace the powers of 2 in the definition of
sufficient symmetry by Paley sequences.

Given a regular sequence c, one way to construct a Paley sequence is to let each q(j) be
an integer n in the interval [2j, 2j+1) chosen so that ‖σ[1,n]c‖∆ is minimal compared to the
values of this functional for other choices of n in [2j, 2j+1). An alternative is to select the
largest value of ‖σ[1,n]c‖∆ in each dyadic interval. Condition (4.6) holds for both of these
choices of q or for neither of them. It follows that such a regular sequence c is sufficiently
symmetric if and only if condition (1.11) is satisfied.

Another consequence of this analysis is that sufficient symmetry is not affected by trans-
lation, although ‖ · ‖Σ is. It is also true that every translate of a regular sequence is regular,
although the functional ‖ · ‖∆ is not invariant under translation.

We now justify the formal calculations that we used in Section 2 to reduce the integrability
of (1.1) to the weighted integrability of f . Assume that the sequence c is regular and
sufficiently symmetric. Define f(t) to be the sum of the absolutely convergent series (2.2).
We have shown that the hypotheses on c imply the integrability of f(t) with respect to w(t)dt.
So the function F : t 7→ f(t)/h(t) is integrable.

Writing f(t) = F (t)h(t) and computing the integrals giving the Fourier coefficients of f
shows that f̂(α) = ∆F̂ (α) for all α. But also f̂ = ∆c because of the absolute convergence
of the series defining f . Thus the sequence F̂ − c tends to 0, and ∆[F̂ − c] ≡ 0. It is easy to
see that if a sequence on Z tends to 0 and the first difference of the sequence is identically 0,
then the sequence must be constant, and hence identically 0. Iterating this observation shows
that F̂ − c ≡ 0 here. So the series (1.1) does indeed represent the integrable function F .

Now consider mixed sine and cosine series with terms as in (1.18), that is with cosines
occurring for indices αk for k’s in a fixed subset S of I, and sines occurring for the other
components of α. The coefficients d(α) in such a series only need to be defined initially
on the part of ZK

+ where αk > 0 for all k in the complement U of S in I. We adopt the
convention that d ≡ 0 on the rest of ZK

+ . Then the only subsets R of I for which the slices dR

can be nontrivial are those with R ⊂ S.
The complex form of such a mixed series will have coefficients, c(α) say, that are even as

functions of the components αk with k in S, and odd as functions of the other components.
These coefficients will form a regular sequence if and only if the coefficients d(α), extended to
all of ZK

+ as above, form a regular sequence on ZK
+ . On the other hand, sufficient symmetry

of c is equivalent to the condition that∑
∅6=R⊂U

∑
β∈ZR

+

‖ρ[R,2β ]d‖∆ < ∞. (4.7)

When c is weakly regular, this is equivalent to requiring that

∑
∅6=R⊂U

∑
γ∈P R

‖ρ[R,γ]d‖∆
|[γ]| < ∞. (4.8)

So for a mixed series with terms (1.18) to be integrable it suffices that the coefficients satisfy
three types of conditions. First, they should form a weakly regular sequence; this restricts
the sizes of the mixed differences on PK. Second, the slices dR with ∅ 6= R ⊂ S should
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also be weakly regular; this restricts the sizes of lower-order differences on the significant
part of ZK

+ \ PK. Third, the slices ρ[R,γ]d with ∅ 6= R ⊂ U should satisfy conditions (4.7)
and (4.8).

5 Walsh series

In order to allow people to read this section before reading the proof for trigonometric series,
we specify some of our notational conventions again. We also modify some notation to
suit the case of multiple Walsh series. Given a multiindex β in ZK

+ , let I(β) be the set of
multiindices α in ZK for which 0 ≤ α < 2β. Denote the indicator function of a given set E
by 1E, and let γ̄ be the multiindex with all components equal to 1. It is easy to check that
a sequence a on ZK

+ is weakly regular if and only if a tends to 0 and

∑
β≥0

∑
γ≥γ̄

{∥∥∥(∆a) · 1I(β)+γ2β

∥∥∥
1

}2

1/2

< ∞. (5.1)

For this section only, we redefine ‖a‖∆ to be the left side above, and ‖a‖′1,2,2β to be the
quantity that is summed on β in (5.1); we also redefine the quantities ‖aS‖∆ for various
subsets S of I in the same way.

The Walsh functions are often regarded as being initially defined on the interval [0, 1), but
also being extended periodically to the real line. This allows us to shift the set X, with no
effect on integrability, so that, in this section only, the symbol X denotes the product [0, 1)K.
In this context, given a nonnegative integer m, let E(m) be the interval (1/2m+1, 1/2m], and
given β in ZK

+ , let E(β) be the cartesian product of the sets E(βk).
We suppose at first that the series ∑

α≥0

a(α)wα(t) (5.2)

converges absolutely, to F (t) say, and we estimate ‖F‖1 in terms of the various quanti-
ties ‖aS‖∆. Clearly,

‖F‖1 =
∑
β≥0

‖F · 1E(β)‖1. (5.3)

Since the series (5.2) converges absolutely, we can freely regroup the terms in it in any
convenient way. Given a multiindex β in ZK

+ , let β̂ = β + γ̄, and then split (5.2) into pieces
of the form ∑

α∈I(β̂)+γ2β̂

a(α)wα(t),

where γ ≥ 0. Factor this piece as

wγ2β̂(t)
∑

α∈I(β̂)

a(α + γ2β̂)wα(t). (5.4)

On the set E(β), each of the functions wα in (5.4) is equal to 1 if the number of components
of α with αk ≥ 2βk is even, and to −1 otherwise. Denote this constant value of wα by εβ(α),
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and let
A(β, γ) ≡ ∑

α∈I(β̂)

εβ(α)a(α + γ2β). (5.5)

Then the quantity (5.4) coincides with A(β, γ)wγ2β̂(t) at all points t in the set E(β), and
hence

F · 1E(β) = (1E(β)) ·
∑
γ≥0

A(β, γ)wγ2β̂ .

Let
Fβ =

∑
γ≥0

A(β, γ)wγ . (5.6)

By the analysis above, F (t) = Fβ(2β̂t) at all points t in E(β). Inserting this in (5.3), and
changing variables yields the formula

‖F‖1 =
∑
β≥0

2−|β̂|‖Fβ‖1. (5.7)

We claim that
|A(β, γ)| ≤ 2|β|

∑
α∈I(β̂)+γ2β̂

|∆a(α)|. (5.8)

To verify this, first rewrite the sum defining A(β, γ) as∑
α∈I(β)

∑
0≤δ≤γ̄

(−1)|δ|a(γ2β̂ + α + δ2β).

Then observe that the inner sum above is also equal to∑
α≤η<α+2β

∆a(γ2β̂ + η),

and that the absolute value of this sum is bounded above by∑
η∈I(β̂)+γ2β̂

|∆a(η)|.

The series defining Fβ converges absolutely. For each subset S of the index set I, let Fβ,S

be the sum of the terms in (5.6) for which γk = 0 for all k in S and γk > 0 for all other
values of k. In particular,

Fβ,∅ =
∑
γ≥γ̄

A(β, γ)wγ .

By inequality (5.8), the `2-norm of the sequence of coefficients in this series is majorized
by 2|β|‖a‖′

1,2,2β̂
. So this is also an upper bound for ‖Fβ,∅‖2, and hence for ‖Fβ,∅‖1 too. It

follows that ∑
β≥0

2−|β̂|‖Fβ,∅‖1 ≤ 2−K‖a‖∆. (5.9)

By equation (5.7),

‖F‖1 ≤
∑
S⊂I

∑
β≥0

2−|β̂|‖Fβ,S‖1. (5.10)
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Inequality (5.9) controls the part of this sum where S is empty.
For the other choices of S, it is useful to have a variant of inequality (5.8). The proof of

that estimate really shows that

|A(β, γ)| ≤ ∑
α∈I(β)

∑
α≤η<α+2β

|∆a(γ2β̂ + η)|. (5.11)

Given a multiindex η in ZK
+ denote the product of its components by |[η]|. The multiindices η

appearing in (5.11) all belong to the set I(β̂). For any such η, the number of multiindices α
for which 0 ≤ α ≤ η is |[η̂]|. Reversing the order of summation in (5.11) yields that

|A(β, γ)| ≤ ∑
η∈I(β̂)

|[η̂]| |∆a(γ2β̂ + η)|. (5.12)

The “series” for Fβ,I really just contains the constant term A(β, 0). So∑
β≥0

2−|β̂|‖Fβ,I‖1 =
∑
β≥0

2−|β̂||A(β, 0)|.

Inserting inequality (5.12) on the right side of this equation reveals that the left side is
majorized by ∑

η≥0


∑

2β̂>η

|[η̂]|2−|β̂|
 |∆a(η)|

Another way to state the relation between η and β̂ here is that 2β̂ ≥ η̂. For each choice of η,
there is a minimal multiindex, β(η) say, with this property, and the quantity in the curly
brackets is bounded above by

2|β̂(η)| ∑
β≥β(η)

2−|β̂| =
∑
δ≥0

2−|δ|.

The right side here is equal to [
∑∞

m=0 2−m]K = 2K, and it follows that∑
β≥0

2−|β̂|‖Fβ,I‖1 ≤ 2K‖∆a‖1.

Let
‖a‖? ≡ ‖a‖∆ +

∑
|S|>0

‖aS‖∆,

with the convention that ‖aI‖∆ = |a(0)|. The methods used in Section 4 show that if a is
regular on ZK

+ , then ‖∆a‖1 ≤ C‖a‖?. Therefore∑
β≥0

2−|β̂|‖Fβ,I‖1 ≤ C ′‖a‖?.

We estimate the quantities
∑

β≥0 2−|β̂|‖Fβ,S‖1 with 0 < |S| < K by combining the meth-
ods used for the corresponding sums when S = ∅ and S = I. For simplicity, we present the
idea in the special case where K = 2 and S = {1}. Then

Fβ,S(t) =
∞∑

j=1

A(β, (0, j))z2(t2)
j.
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The L1-norm of Fβ,S is bounded above by the `2-norm of the sequence A(β, (0, ·)). To
control this sequence norm, we construct various auxiliary sequences by combining some of
the values of |∆a| in the strip where 0 ≤ α1 < 2β1+1. For each integer i in the interval [0, β1]

define a sequence (d
(i)
β2

(j))∞j=1 by letting

d
(i)
β2

(j) =
(2i+1−1,(j+1)2β2−1)∑

α=(2i,j2β2)

|∆a(α)|.

Also let
d

(−1)
β2

(j) =
∑

j2β2≤n<(j+1)2β2

|∆a(0, n)|.

By inequality (5.11),

‖A(β, (0, ·))‖2 ≤
β1∑

i=−1

2i+12β2+1
∥∥∥d(i)

β2

∥∥∥
2
. (5.13)

Because of the way that these sequences were chosen,

‖d(i)
β1
‖2 ≤ ‖∆a‖′1,2,2(i,β2),

when i ≥ 0. Insert this in the part of the right side of (5.13) where i ≥ 0, multiply by 2−|β|−2,
and add over all choices of β in ZK

+ . The outcome is the combination

∑
β2≥0

∑
i≥0

 ∑
β1≥i

2i−β1

 ‖∆a‖′1,2,2(i,β2), (5.14)

which is equal to 2‖a‖∆ because the sum inside the square parentheses is equal to 2. The

quantity (5.14) is the main part of an upper bound for
∑

β≥0 2−|β̂|‖Fβ,S‖1. Now consider the
corresponding contributions from the part of the right side of (5.13) where i = −1. They
add up to ∑

β2≥0

 ∑
β1≥0

2−β1

 ‖∆a(0, ·)‖′1,2,2β2 , (5.15)

where the functionals ‖ ·‖′1,2,2j are the single-variable versions that apply to functions on Z+.
The entries in the sequence ∆a(0, ·) are mixed differences of the form

[a(0, j)− a(0, j + 1)]− [a(1, j)− a(1, j + 1)].

With the convention that ‖d‖′ ≡ ∑
j≥0 ‖d‖′1,2,2j , expression (5.15) simplifies to 2‖∆a(0, ·)‖′.

The hypotheses in Theorem 1.4 partly concern expressions like ‖a{1}‖∆ = ‖∆2a(0, ·)‖′ that
involve single differences. The methods in Section 4 also show that ‖∆2a(1, ·)‖′ ≤ C‖a‖∆.
Therefore ∑

β≥0

2−|β̂|‖Fβ,S‖1 ≤ C ′‖a‖?.

The sum of these expressions over all subsets S of I majorizes ‖F‖1.
Finally, we remove the hypothesis that a ∈ `1. Split the function a into pieces a(1)

and b(1) as follows. For an integer r1 to be specified later, let d(1) be the function on ZK
+ that
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vanishes on the set I1 of multiindices, α say, with αk ≤ r1 for some k, and that coincides
with ∆a on the rest of ZK

+ . It is shown at the beginning of Section 4 that regularity implies
that ∆a ∈ `1. For all α in ZK

+ , let a(1)(α) be the sum of the absolutely convergent series∑
γ≥α

d(1)(γ).

Then ∆a(1)(α) = d(1)(α) for all α. Let b(1) = a− a(1); then b(1) vanishes off the finite set I1.
The analysis given earlier applies to the Walsh polynomial

F (1) ≡ ∑
α≥0

b(1)(α)zα,

and shows that ‖F (1)‖1 ≤ C ′′‖b(1)‖? ≤ C ′′‖a‖?.
For all sufficiently large values of r1 it is the case that ‖a(1)‖? ≤ (1/2)‖a‖?. Make

such a choice of r1, and then split a(1) into pieces a(2) and b(2) much as above, in such
a way that ‖a(2)‖?‘ ≤ (1/2)‖a(1)‖?, while b(2) has finite support and ‖b(2)‖? ≤ ‖a(1)‖?.
Let F (2) be the Walsh polynomial with coefficients b(2), and continue the process. The
series

∑∞
n=1 ‖F (n)‖1 converges, and the completeness of L1 then guarantees that there is an

integrable function F with Walsh coefficients given by

F̂ (α) =
∞∑

n=1

b(n)(α)

for all α in ZK
+ . On the other hand, this series also converges to a(α). This completes the

proof of Theorem 1.4.

6 Earlier work

The papers [4] and [2] contain summaries of earlier work on integrability of single-variable
trigonometric series. In previous work on double cosine series and double sine series, the
weakest integrability criteria on first-order mixed differences seem to be those used by
F. Moricz in [11]. For other types of multiple trigonometric series, the weakest earlier
criteria seem to be those presented in [17] by S.A. Telyakovskĭı. These papers also contain
discussions of other work on integrability for multiple trigonometric series. The paper [12],
by Moricz and F. Schipp, seems to be the only earlier publication on integrability of mul-
tiple Walsh series. We now show how our criteria follow from the weakest conditions used
previously.

The main part of Moricz’s first integrability criterion for double cosine series, with coef-
ficients tending to 0, is that there be some index p > 1 for which

∞∑
i=0

∞∑
j=0

2i+j

2−i−j
2i+1−1∑
m=2i

2j+1−1∑
n=2j

|∆a(m,n)|p
1/p

< ∞. (6.1)

Moricz also requires here that

∞∑
i=0

2i

2−i
2i+1−1∑
m=2i

|∆a(m, 0)|p
1/p

< ∞ (6.2)
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for some p > 1, and similarly for the corresponding expression with i and m equal to 0 and j
and n varying. These conditions are natural analogues of ones introduced by G.A. Fomin [7]
in work on integrability of single-variable trigonometric series.

The hypotheses in Theorem 1.2 follow from those used by Moricz. In fact, the validity of
condition (6.1) for some p > 1 implies that ‖a‖∆ < ∞. For weakly regular sequences a, the
validity of condition (6.2) for some p > 1 implies weak regularity of the slice a{2}, and the
validity of the transpose of condition (6.2) for some p > 1 implies weak regularity of a{1}.
The converse implications are false.

To verify these claims, proceed as in [4], [1], and [2]. Note first that2−i−j
2i+1−1∑
m=2i

2j+1−1∑
n=2j

|∆a(m,n)|p
1/p

is just the `p-average of ∆a over the set J(i, j)+(1, 1)2(i,j). It follows from Hölder’s inequality
that if condition (6.1) is satisfied for some value of the index p, then the condition also holds
for all smaller values of p. The same is true for condition (6.2) and its transpose. Suppose
without loss of generality that 1 < p ≤ 2 in all three conditions.

Rewrite (6.1) in the form asserting that

∞∑
i=0

∞∑
j=0

2(i+j)/p′
2i+1−1∑

m=2i

2j+1−1∑
n=2j

|∆a(m,n)|p
1/p

< ∞, (6.3)

where p′ is the index conjugate to p. Consider the seemingly stronger condition that

∑
(i,j)≥0

2(i+j)/p′
 ∑

(m,n)≥(2i,2j)

|∆a(m,n)|p
1/p

< ∞. (6.4)

Because p > 1, the factors 2(i+j)/p′ grow geometrically with (i, j), and the same kind of
estimation and reversal of orders of summation as in the proof of Lemma 2.2 shows that
conditions (6.4) and (6.3) are equivalent in these cases.

As in our section on Walsh series, let I(i, j) be the set of multiindices α with the property
that 0 ≤ α < 2(i,j). Consider the quantity that is summed on i and j in (6.4), and rewrite it
as  ∑

(r,s)≥(1,1)

{
(2(i+j)/p′

∥∥∥(∆a) · 1I(i,j)+(r,s)2(i,j)

∥∥∥
p

}p
1/p

. (6.5)

Regard the expression inside the curly brackets as 2i+j times the `p-average of ∆a over the
set I(i, j) + (r, s)2(i,j). Since p > 1, this average majorizes the corresponding `1-average,
so that its product with 2i+j majorizes the `1-norm of ∆a on the set I(i, j) + (r, s)2(i,j).
Thus (6.5) is no smaller than the `p combination of these `1-norms. Since p ≤ 2 this
combination does not increase if we replace p by 2. Summing the resulting `2 combinations
of `1-norms then gives that

∑
β≥0

 ∑
γ≥(1,1)

{
‖(∆a) · 1I(β+γ2β)‖1

}2

1/2

< ∞. (6.6)
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As in Section 5, it is easy to check that this condition holds if and only if ‖a‖∆ is finite.
Similarly, condition (6.2) implies that the function

p : m 7→ a(m, 0)− a(m, 1)

is weakly regular on Z+. As noted earlier, weak regularity of ∆a on Z2
+ implies that the

slice a(2,1) : m 7→ a(m, 1) is also weakly regular on Z+. Then the sum of this slice and the
function p must be weakly regular, and it is equal to the slice a{2} mapping m to a(m, 0).

To see that the various converse implications are false, we use the fact that for each
sequence d in `1(Z2

+), the sequence a given by

a : (m,n) 7→ ∑
(i,j)≥(m,n)

d(i, j) (6.7)

tends to 0, and has the property that ∆a = d. Suppose that these differences d are lacunary
in the special sense that they vanish except on the set of pairs of the form 2β, where β ≥ 0.
Let g(β) = d(2β) for all such multiindices β. Then a is weakly regular if and only if

∑
(m,n)≥0

 ∑
(i,j)≥(m,n)

|g(i, j)|2
1/2

< ∞. (6.8)

On the other hand, the corresponding sequence a satisfies satisfies condition (6.1) if and
only if ∑

(i,j)≥0

2(i+j)/p′|g(i, j)| < ∞. (6.9)

Examples like the one where g(i, j) = (i + 1)−2(j + 1)−2 show that, when p > 1, this is a
strictly stronger restriction that (6.8). These examples are also regular, but fail to satisfy
condition (6.2) and its transpose when p > 1.

Condition (6.8) is the counterpart of a single-variable condition that arose in the study [18]
of integrability of lacunary sine series with respect to dt/t. Moricz [10] has considered the
corresponding problem for lacunary double sine series, and has shown, under reasonable
auxiliary hypotheses, that condition (6.8) is necessary and sufficient for the integrability of
such series with respect to w(t)dm(t). This is related to the instance of our Theorem 1.2
where the sequence ∆a has special lacunary form considered above.

When p = 1, condition (6.1) becomes the condition that ‖∆a‖1 < ∞, while condi-
tion (6.3) becomes the condition that∑

β≥0

∑
α≥2β

|∆a(α)| < ∞. (6.10)

This is stronger than merely requiring that ∆a ∈ `1; in fact, as in [7], reversing the order of
summation in condition (6.10) shows that it is equivalent to the requirement that∑

α≥(1,1)

|∆a(α)| log(1 + α1) log(1 + α2) < ∞.
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The combination of this with similar counterparts of the endpoint case, where p = 1, of
condition (6.2) and its transpose, is equivalent to the requirement that∑

α≥0

|∆a(α)| log(2 + α1) log(2 + α2) < ∞, (6.11)

which is Moricz’s second sufficient condition for integrability of double cosine series with
coefficients a that tend to 0. As in the cases where p > 1, condition (6.11) implies our
regularity condition, via conditions like (6.10), and the same examples show that the converse
is false.

In [12] Moricz and Schipp show that a double Walsh series is integrable if its coefficients
tend to 0 and there is some index p > 1 for which the coefficients satisfy condition (6.1),
condition (6.2), and the transpose of condition (6.2). As in the case of cosine series, such a
Walsh series also satisfies the hypotheses of Theorem 1.4, but there are double Walsh series
satisfying these hypotheses but not satisfying the conditions used in [12].

For double sine series with coefficients (b(α))α>0 that tend to 0, Moricz shows that if

∞∑
i=0

∞∑
j=0

2i+j

2−i−j
2i+1−1∑
m=2i

2j+1−1∑
n=2j

mpnp∆b(m,n)|p
1/p

< ∞. (6.12)

for some p > 1, then the sine series is integrable. This condition clearly implies (6.1), and
hence that b is weakly regular. It also implies strong regularity of b.

To verify this, fix an index p > 1, and choose a constant C that majorizes the left side
of (6.12). Then let

R(i) =
{
α ∈ P 2 : α1 ≥ 2i

}
,

and use the fact that
‖b(1,2i)‖∆ ≤ ‖∆b · 1R(i)‖′. (6.13)

By our analysis of condition (6.1), the right side above is majorized by C ′2−iC , and therefore∑
i≥0

‖b(1,2i)‖∆ ≤ 2C ′C.

Similar estimates holds for sums of the quantities ‖b(2,2j)‖∆ and |ρ[2i,2j ]b|. Moreover, it is
clear from this analysis that the extra factors mpnp in (6.12) can be replaced by much smaller
factors like [log(1+m) log(1+n)]2p, and the resulting variant of (6.12) will still imply strong
regularity, if the coefficients tend to 0, and hence integrability.

It is also shown in [11] that the condition that∑
(m,n)>0

log(m + 1) log(n + 1)|∆b(m,n)| < ∞ (6.14)

is sufficient for integrability of a double sine series with coefficients b(α) that tend to 0. To
account for this by our methods, note first that, as in the case of (6.10), condition (6.14)
implies weak regularity of b. It follows from (6.13) that

‖b(1,2i)‖∆ ≤ C ′ ∑
m≥2i

∑
j≥0

∑
n≥2j

|∆b(m,n)|.
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Summing this inequality on i leads to condition (6.10) with the sequence a replaced by b.
Hence the sequence b is strongly regular. Again the converse implication is false.

Cosine series, sine series, and mixed series in two and more variables are all considered by
Telyakovskĭı in the paper [17]. To compare the conditions used there with ours, we translate
those conditions into our notation. We also permute the variables so that the sine factors
correspond to the initial M variables. Denote the coefficient sequence by (d(α))α≥0, with
the convention that d(α) = 0 if αk = 0 for some k ≤ M .

Telyakovskĭı considers sequences d that tend to 0 for which there is an auxiliary se-
quence C that tends to 0 with the properties that C(α) ≥ |∆d(α)| for all α in ZK

+ and

∑
α≥0

[
M∏

k=1

αk

] {
K∏

k=1

(αk + 1)

}
|∆C(α)| < ∞. (6.15)

He shows that any such sequence C will also have the property that

∑
α≥0

[
M∏

k=1

αk

]
C(α) < ∞, (6.16)

and he points out that this condition is equivalent to the previous one when ∆C(α) ≥ 0 for
all α. He deduces integrability from the condition that |∆d| have a majorant C that tends
to 0 and satisfies (6.15).

In this situation, let D(α) =
∑

γ≥α |∆C(γ)| for all α in ZK
+ . Then D ≥ C and ∆D = |∆C|.

It follows that conditions (6.15) and (6.16) both hold with the sequence C replaced by D.
Assume without loss of generality that C = D. Then C tends to 0 monotonically in the
sense that

C(α) ≥ C(γ) when α ≥ γ. (6.17)

The existence of a sequence C that majorizes ∆d, that tends to 0 monotonically, and that
satisfies (6.16) implies the integrability criteria listed at the end of Section 4.

To verify this, note first that, as in [11, page 208], these conditions imply that∑
β≥0

2|β| sup
{
|∆d(γ)| : γ ≥ 2β

}
< ∞.

This is the version of inequality (6.3) with K variables and with p = ∞. It implies the
corresponding version of inequality (6.1), which then also holds with p = 2. This implies
that d is weakly regular. It also follows that the slices dR with R ⊂ {M + 1, . . . ,K} are
weakly regular. Finally, the presence of the factors αk with k ≤ M in (6.16) implies a
suitable variant of condition (6.12) in K variables, and inequality (4.7) follows from this.

To summarize, every condition on the sizes of individual mixed differences that was
previously known to imply integrability also implies our integrability criteria. Of course, for
some of these conditions, like (6.11) and (6.14), the integrability conclusion can be deduced
much more simply by the other methods, like summation by parts, that were used in [11] with
these conditions. These methods also show that if the coefficients in a multiple trigonometric
series tend to 0 and have mixed differences that belong to `1, then the series converges at all
points in the the set I with no components equal to 0. It follows that this pointwise sum is
integrable if the coefficients are regular and sufficiently symmetric.
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7 Combinations of mixed differences

Our symmetry condition (1.9) can be viewed as a restriction on the sizes of various sums
of mixed differences. For single-variable series with regular coefficients, the corresponding
symmetry condition is also necessary [2] for integrability. For multiple trigonometric series
with regular coefficients, our methods show that integrability occurs if and only if∑

β≥0

|(f̃ − f)|E(β) < ∞. (7.1)

To force this sum to be finite, we used our symmetry condition to control the L1-norms
of the various series (2.22). We did this by estimating the values of the functionals ‖ · ‖∆

and ‖ · ‖Σ applied to the coefficients in these series. Integrability does not imply regularity,
however, so that it seems likely that there are cases where these methods yield unduly large
overestimates of these L1-norms. This suggests that sufficient symmetry is not necessary for
integrability of multiple series with regular coefficients.

A rather artificial way to return to the position of having a symmetry condition that is
also necessary for the integrability of certain series is to strengthen the regularity hypothesis.
Call a sequence c on ZK very regular if it is regular and∑

0<|S|<K

∑
β≥0

‖σ[S,2β]c‖∆ < ∞,

that is
∑

β≥0 ‖σ[S,2β]cS‖∆ is finite for all proper subsets S of I. The analysis of multiple
sine series in the previous section shows that any sequence that tend to 0 and has small
enough mixed differences is very regular. The proof of Theorem 1.1 show that a complex
trigonometric series with a very regular coefficient sequence c is integrable if and only if∑

β≥0

|σ[I,2β ]c| < ∞.

This applies, for example, to the double series

∑
(m,n)>0

1

[log(m + n + 2)]2
sin(mt1) sin(nt2),

and shows that it is not integrable.
We conclude by discussing a possible alternative to our method of proof. Given two

multiindices α and γ in ZK and a sequence c defined on that set, let

∆γ(α) ≡ c(α) − c(α + γ).

By an argument that goes back to Bernstein’s paper [3] on absolute convergence of trigono-
metric series, it is easy to show, as in [2], that if the sequence c tends to 0 and if∑

β≥0

2−|β|/2‖∆2βc‖2 < ∞, (7.2)
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then the series (1.1) is integrable. For single-variable sequences c that tend monotonically
to 0 at ±∞, condition (7.2) is equivalent [2] to the combination of regularity and sufficient
symmetry.

In any case, this combination implies (7.2). If this could be proved simply, then we would
have a less complicated proof of Theorem 1.1. At the moment, however, the simplest way
that we have found to deduce (7.2) from our integrability criteria is to examine the proof of
Theorem 1.1, and observe that the method really shows that

∑
β≥0

{[
|f |2

]
E(β)

}1/2

< ∞, (7.3)

or equivalently that ∑
β≥0

2−|β|/2
∥∥∥F · 1E(β)

∥∥∥
2

< ∞. (7.4)

As in [9], this also follows easily from (7.2); moreover, as in [2] it is also easy to verify
that (7.4) implies (7.2).

The situation for Walsh series is similar. The set of Walsh functions of one variable is
a group under pointwise multiplication, and this structure transfers [16, §1.2] to a a group
operation ⊕ on the set of nonnegative integers. Given a sequence a on Z+ and a nonnegative
integer m, let (Wm)a be the sequence mapping n to a(n ⊕ m) for all n in Z+. Extend
these notions to multiple Walsh systems in the obvious way. With the appropriate change
in the definitions of the sets Eβ, our proof of Theorem 1.4 shows that if a is regular, then
condition (7.4) holds. As in [13], condition (7.4) is equivalent, for coefficient sequences a
that tend to 0, to the counterpart∑

β≥0

2−|β|/2‖a− (W2β )a‖2 < ∞

of Bernstein’s condition.
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