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Abstract. We consider Vilenkin systems (χn)∞0 and series
∑∞

n=0 anχn with coefficients
tending to 0. We suppose that the coefficients satisfy the regularity condition that

∞∑
ν=0


∞∑

j=1

(j+1)2ν−1∑
n=j2ν

|an − an+1|
2


1/2

<∞.

We show that the series then represents an integrable function on the set [0, 1) if and only
if the coefficients satisfy a symmetry condition similar to one that arises in the study of
integrability of trigonometric series.

The symmetry condition is automatically satisfied by regular sequences if the Vilenkin
system is of bounded type. So integrability follows in this special case if the coefficients
tend to 0 and their differences satisfy the condition above. This was proved earlier by
other methods. Our methods also show that when the generators of the Vilenkin system
all have odd order, and the system is enumerated in a natural symmetric way, then the
corresponding Fejér kernels form a bounded sequence in L1, even when it is known that
this is not true for the Fejér kernels for the conventional enumeration.

MATHEMATICS SUBJECT CLASSIFICATION CODES: Primary 42C10. Secondary
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1. Introduction

We state the symmetry condition at the end of this section, after specifying a con-
struction of Vilenkin systems. In Section 2, we provide more information about these
systems, and outline the proof of our main result. In Section 3, we complete the proof,
except for two lemmas, which we prove in Section 4. We propose and analyse an alternate
indexing of some Vilenkin systems in Section 5. We begin this section by mentioning some
other work on integrability, and we comment further on related matters in Section 6.

The simplest example of a bounded Vilenkin system is the Walsh system. The condi-
tion that the differences 4an = an − an+1 have the property that

∞∑
ν=0


∞∑

j=1

(j+1)2ν−1∑
n=j2ν

|∆an|
2


1/2

<∞. (1.1)

was encountered, independently, by N. Tanović-Miller and her fellow workers, and by us in
work on Walsh series. Both groups showed [19, 1] that condition (1.1) implies integrability
for Walsh series with coefficients (an) tending to 0.

Both groups then showed [7, 2] that the same condition implies integrability for cosine
series with coefficients (an) tending to 0. Finally, both groups also considered sine series
with coefficients (bn) tending to 0 and satisfying the analogue of condition (1.1), and
showed [9, 2] that these series are integrable if and only if

∞∑
n=1

|bn|
n

<∞. (1.2)

These separate results on cosine and sine series can be combined as a statement about
trigonometric series in the complex form

∑∞
−∞ cne

2πinx. If cn → 0 as n→±∞ and if

∞∑
ν=0


∞∑

j=1

 ∑
j2ν≤|n|<(j+1)2ν

|4cn|
2


1/2

<∞, (1.3)

then the series represents an integrable function if and only if

∞∑
n=1

|cn − c−n|
n

<∞. (1.4)

Both groups also showed that conditions (1.1) and (1.3) are strictly weaker than
all conditions, on the sizes of individual differences, that were previously known, in the
presence of symmetry conditions like (1.2) and (1.4), to imply integrability of trigonometric
series. In that context, Tanović-Miller’s group used summation by parts and estimates for
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L1-norms of sums of Dirichlet kernels to prove their integrability theorems, while we used
methods similar to those in the present paper. We will discuss conditions on the sizes of
combinations of differences in Section 6.

The symmetry condition for unbounded Vilenkin systems resembles conditions (1.2)
and (1.4). To state it we need to recall the definition of general Vilenkin systems, and the
standard enumeration for them. We will discuss the advantages of a different enumeration
of some systems in Section 5. For completeness, we repeat the description given in [6].
See [23 and 24] for much more on this topic. We will use the term Vilenkin system for any
orthonormal system of functions that can be constructed in the following way.

Begin with a nonatomic probability space like the interval [0, 1) and a sequence (pr)∞r=0

of prime numbers, and construct a sequence (χn) of functions on the space as follows.
Let χ0 be the constant function 1 and let Γ0 be the singleton set {χ0}. Let φ1 be a
function taking each value in the set of p1-th roots of unity with probability 1/p1. For
1 ≤ n < p1 let χn be the function φn

1 , and let Γ1 be the set of all functions χn with
0 ≤ n < p1.

Let m0 = 1. For each positive integer r, let mr =
∏r

n=1 pn. When r > 1, assume that
the functions χn with n < mr−1 have been specified and denote the set of these functions
by Γr−1. Then select three functions αr, βr, and γr with the following properties:
(i) αr belongs to the set Γr−1;
(ii) βr is a pr-th root of αr that is constant on each set where αr is constant;
(iii) γr takes each value in the set of pr-th roots of unity with probability 1/pr ;
(iv) γr is independent of the functions in the set Γr−1.
Let φr be the product γrβr. Then φpr

r = αr ∈ Γr−1. There is a multiple, tr say, of pr so
that the values taken by φr run through the set of tr-th roots of unity, each such value
occurring with probability 1/tr.

Observe that each integer n in the interval [mr−1,mr) has a unique representation as
n = jmr−1 + k with 1 ≤ j < pr and 0 ≤ k < mr−1. Given this representation of n, let
χn = φj

rχk. Denote the set of functions χn with 0 ≤ n < mr by Γr, and continue the
construction for all r.

The system of functions constructed in this way is said [24] to be of bounded type
if the sequence (pr) is bounded. When αr = 1 for all r the system is said [25] to be of
multiplicative type. The Walsh system arises when pr = 2 and αr ≡ 1 for all r. Varying
the sequence (pr) and the choices of αr leads to many other examples. The results in this
paper are mainly new when the sequence (pr) is unbounded, but the methods work for all
Vilenkin systems.

Denote the underlying probability space by Ω and the probability measure on it by dω.
Given a function f in L1(dω) and a Vilenkin system (χn) let

f̂(n) =
∫

Ω

f(ω)χn(ω) dω.

Say that a series
∑∞

n=0 anχn represents an integrable function, or simply that the series is
integrable, if there is such an f in L1(dω) for which f̂(n) = an for all n.
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The functions χn all have absolute value 1, and they form an orthonormal sequence
in L2(dω). By the Riemann-Lebesgue lemma, a necessary condition for integrability is
that an → 0 as n→∞. This is not sufficient, however, because [4] there are Walsh series
that are not integrable but have coefficients that tend monotonically to 0.

By our main theorem, a Vilenkin series is integrable if its coefficients tend to 0 in a
sufficiently regular and balanced way. A particular case of this principle is the fact [26] that
a Walsh series with coefficients that form a convex sequence tending to 0 must be integrable.
Such convex sequences also satisfy the conditions, on the sizes of first differences, that were
shown in [6] and [16] to imply integrability for bounded Vilenkin systems.

We sometimes regard the sequence (an)∞n=0 as a function on the set Γ = {χn}∞n=0,
and then use the notation a(χn) rather than an. Each element of Γ is a function on
the underlying probability space. The complex conjugate of χn also belongs to Γ. We
follow [23] in using the notation ñ for the index for which χn = χñ. The indices ñ and n
are equal if and only if (χn)2 coincides with the constant function 1.

Call the coefficient sequence (an) regular if it tends to 0 and satisfies condition (1.1).
Call it sufficiently symmetric if

∞∑
n=1

|an − añ|
n

<∞. (1.5)

Another notation for the n-th term in the sum above is
|a(χn)− a(χn)|

n
.

Theorem 1. If a Vilenkin series has a regular coefficient sequence, then the series is
integrable if and only if the sequence is sufficiently symmetric.

In proving this in the next three sections we will sometimes use other forms of the
regularity and symmetry conditions. We note here that condition (1.5) follows easily from
condition (1.1) if the system is of bounded type. Hence regularity implies integrability in
this case, as was shown in a different way in [19] and [1].

On the other hand, given any Vilenkin system that is not of bounded type, one can
devise a convex sequence that tends to 0 but is not sufficiently symmetric. Thus regularity
does not imply sufficient symmetry in this case. By Theorem 1, the series with these
coefficients is not integrable; earlier results showing that convexity does not always imply
integrability appear in [17].

This also means that the same sequence can satisfy condition (1.5) for some Vilenkin
systems, and fail to satisfy the condition for other systems. For a regular coefficient
sequence, integrability can depend on the sequence (pr) of prime numbers, but not on the
particular choice of Vilenkin system associated with those prime numbers.
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2. Coronas and coronets.

The functions in a Vilenkin system form a denumerable abelian group under pointwise
multiplication, with every element in the group having finite order. Vilenkin began [23]
with such a group, and also considered its dual group, which is separable, compact and
abelian, and becomes a probability space if its Haar measure is suitably normalized.

We will usually suppress the group structure on this space, because that structure
should not matter in determining whether a given Vilenkin series is integrable. Instead this
depends on the joint distribution of the functions χn and the properties of the coefficients
in the series. There is a measure-preserving mapping [24, p. 703] that we will call the
standard map of each Vilenkin group onto the set [0, 1) with Lebesgue measure. We use
the properties of the Vilenkin functions transferred to the unit interval by a variant of the
standard map. We will specify that variant at the beginning of Section 3.

Let Gr be the set where the functions χn with n < mr all coincide with 1. Then
Gr ⊂ Gr−1 for all r > 0, and Gr has measure 1/mr. The standard map and our variant of
it both identify Gr with the interval [0, 1/mr). The sets Gr−1\Gr are called coronas; they
correspond to the intervals [1/mr , 1/mr−1). Each such interval is a union of pr−1 disjoint
translates, by multiples of 1/mr , of the deleted interval [0, 1/mr); we call these translates
lots.

Our proof of Theorem 1 runs as follows. Consider a formal series

S(x) =
∞∑

n=0

anχn(x) (2.1)

with regular coefficients. Define a function h on the interval (0, 1) by letting h(x) be
equal to (1−φr(x))/mr−1 when x ∈ Gr−1\Gr, and following this pattern in every corona.
Consider the formal product h(x) · S(x).

On the corona Gr−1\Gr the coefficients in the product series mostly have the form

an − an−mr−1

mr−1
.

It follows from the regularity hypothesis on the sequence (an) that the formal product
series converges absolutely on each corona. Denote the sum of the product series by f(x).

For our variant of the standard map, there are positive constants c and C so that

cx ≤ |h(x)| ≤ Cx for all x in the interval (0, 1). (2.2)

So, at least formally, the series S(x) is integrable if and only if the function g : x 7→ f(x)/x
is integrable on the set (0, 1). This reduces matters to showing that g is integrable if and
only if condition (1.5) holds.

To study this question we split the coronas where pr > 3 into subsets that we call
coronets, chosen so that the variable x changes by a relatively small amount in each coronet.
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We take the smallest coronet in Gr−1\Gr to be the union of the first two lots in this corona,
the next smallest coronet to be the union of the next four lots, and continue doubling until
the next step would use more than half of the vacant lots in the corona. At that point,
we combine all the remaining lots to form the last coronet in Gr−1\Gr. When pr ≤ 3, we
regard the whole corona Gr−1\Gr as a coronet. Each coronet then has the property that
the ratio of any two numbers in it lies between 1/3 and 3.

The interval (0, 1) is a union of disjoint coronets, which we list from right to left
as (Iν)∞ν=1. Then ∫ 1

0

|f(x)|
x

dx =
∞∑

ν=1

∫
Iν

|f(x)|
x

dx. (2.3)

In each coronet Iν the variable x is nearly constant, and the measure of Iν is about equal
to any value of x in Iν . So the sum (2.3) is finite if and only if the sum of the average
values of |f(x)| in the various coronets is finite.

To estimate the average value of |f(x)| over Iν , we expand f(x) as the formal product
S(x) · (1 − φr(x))/mr−1 for the appropriate value of r. We then split this product series
as sν(x) + Tν(x), where sν(x) is the sum of the terms in the series for which n belongs to
a suitable subset of [0,mr).

In the next section, we show that the regularity hypothesis on (an) implies the finite-
ness of the sum of the averages, over the intervals Iν , of the sizes of the tails Tν(x). We
also show that this is true for the sum of the averages of |sν(x)− sν(0)|. So a series with
regular coefficients is integrable if and only if

∞∑
ν=1

|sν(0)| <∞. (2.4)

We then show for regular coefficient sequences that this sum is finite if and only if the
symmetry condition (1.5) holds. Finally, we indicate how to make the formal parts of this
outline rigorous.
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3. Details of the proof.

We begin by specifying more conventions and notation. By the definition of the
set Gr−1 all the functions in Γr−1 are equal to 1 on it. So βr is equal to a fixed pr-th root
of 1 on this set. Since γr is independent of Γr−1, the restriction of φr to Gr−1 takes each
value in the set of pr-th roots of unity with the same probability. It takes the value 1 on
the set Gr, by the definition of that set.

The standard map makes the function φr constant on each lot in the corona Gr−1\Gr,
and makes its values on successive lots in the corona run counterclockwise through the set
of nontrivial pr-th roots of unity starting with ei2π/pr . We modify this mapping so that
these constant values run from right to left through the set of nontrivial pr-th roots of
unity. When pr = 5 for instance, we let the successive values taken on successive lots
in the corona be ei2π/5, e−i2π/5, ei4π/5, and e−i4π/5. Then |(1 − φr(x))| is nondecreasing
on Gr−1\Gr and the function h defined in the previous section satisfies condition (2.2).

We also consider coronas and coronets in the index set Z+ = {0, 1, 2, ...}. When we
are subdividing sets of integers, we use the notation [a, b) to mean the set of integers n for
which a ≤ n < b; it should be clear from the context whether we intend [a, b) to be a set
of real numbers or a set of integers.

Call the interval [mr−1,mr) in Z+ the r-th corona. It is a union of disjoint lots that are
translates of the interval [0,mr−1) by multiples of mr−1. We divide the corona [mr−1,mr)
into the same number of coronets that we used in splitting the interval [1/mr , 1/mr−1),
but the procedure looks different because we have not modified the standard enumeration
of Vilenkin systems. Again, we only split the coronas in the cases where pr > 3. In these
cases, the first coronet is the union of the first and last lots in the corona, the second
coronet consists of the next two vacant lots at the beginning and the last two vacant lots
at the end, and so on. Again, we keep doubling until this would use more than half of
the vacant lots in the corona, and at that point we assign all the remaining vacant lots to
one large coronet. We do this for all r, and enumerate the successive coronets as (Jν)∞ν=1.
Finally, we let Kν be the union of the set {0} with

⋃ν
µ=1 Jµ.

Denote the right endpoint of the domain coronet Iν by xν−1. If Iν is the last coronet
in Gr−1\Gr, then xν−1 = 1/mr−1. Thus (1/mr)∞r=0 is a subsequence of (xν)∞ν=0. De-
fine a dual sequence (kν) of integers by letting kν be the smallest positive integer in the
complement of the set Kν . Then kν = mr when xν = 1/mr, and it turns out that the
product kνxν always lies in the interval (1/2, 1].

We will mainly work with the condition that

∞∑
ν=0


∞∑

j=1

(j+1)kν−1∑
n=jkν

|∆an|
2


1/2

<∞. (3.1)

We say that a sequence (kν) of positive integers grows geometrically if there are constants c
and C in the interval (1,∞) for which ckν ≤ kν+1 ≤ Ckν for all ν; this is true for
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the sequence (kν) above with c = 2 and C = 6. For each coefficient sequence (an),
condition (3.1) holds for one index sequence (kν) that grows geometrically if and only if
the condition holds for all such index sequences. So, for sequences (a(n)) that tend to 0,
condition (3.1) is equivalent to regularity.

On the other hand,
∞∑

n=k1

|∆an| ≤
∞∑

ν=1

6kν−1∑
n=kν

|∆an|,

because the intervals [kν , 6kν) cover the set [k1,∞). Since the right side above is finite if
condition (3.1) holds, regularity implies that (an) has bounded variation.

We now discuss some other forms of the symmetry condition (1.5); they arise more
naturally in our proof of Theorem 1. Whenever the prime number pr is odd, write it in
the form 2qr + 1. In this case, the r-th corona is a union of 2qr lots. Given a coefficient
sequence (an) and a value of r for which pr is odd, form numbers Cr(s) as follows. Let Cr(1)
be the average of (an) over the first lot in the r-th corona, and Cr(−1) be the average
of (an) over the last lot in the corona. When qr ≥ 2, let Cr(2) be the average of (an) over
the second lot, and let Cr(−2) be the average of (an) over the second-last lot. Continue
in this way until s = ±qr.

For sequences (an) with bounded variation, condition (1.5) is equivalent to the re-
quirement that ∑

pr>2

qr∑
s=1

|Cr(s)− Cr(−s)|
s

<∞,

and this is equivalent, for such sequences, to the requirement that∑
pr>2

∑
2i<qr

|Cr(2i)− Cr(−2i)| <∞. (3.2)

Fix an index r, and cover the natural numbers with blocks that are disjoint translates
of the set [0,mr); then split each block into lots that are disjoint translates of [0,mr−1).
For the standard enumeration of the Vilenkin system, χn · φr = χn+mr−1 , unless n lies in
the last lot in some block, when χn · φr = χn+mr−1−mr

instead. Formally multiplying the
series S(x) by φr(x) has the following effect on the coefficients in the series. In each block
they are shifted to the right by mr−1, except that each coefficient in the last lot in each
block is shifted to the corresponding position in the first lot in the block.

To save on subscripts, we change to function notation for the coefficients a(n). We
assume that they form a regular sequence, and hence that ∆a ∈ `1. We majorize the
coefficients br(n) in the product series S(x) · (1 − φr(x))/mr−1 as follows. In each lot, D
say, of a block B, except for the first lot, we have that

br(n) =
a(n)− a(n−mr−1)

mr−1
. (3.3)
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In these lots

|br(n)| ≤ 1
mr−1

[∑
n∈D

|∆a(n)|+
∑
n∈P

|∆a(n)|
]
, (3.4)

where P is the previous lot. In the first lot we have that

br(n) =
a(n)− a(n−mr−1 +mr)

mr−1
, (3.5)

and that
|br(n)| ≤ 1

mr−1

∑
n∈B

|∆a(n)|. (3.6)

Each lot contains exactly mr−1 integers. Hence∑
n∈B

|br(n)| ≤ 3
∑
n∈B

|∆a(n)|. (3.7)

It follows from our assumption that (a(n)) has bounded variation that the formal series
S(x) · (1− φr(x))/mr−1 converges absolutely and uniformly.

When kν ∈ (mr−1,mr], let sν be the sum of the finite number of terms in the series∑∞
n=0 br(n)χn for which n ∈ Kν , and let Tν be the sum of the remaining terms in this series.

Since the series for Tν converges uniformly, its coefficients are the Fourier coefficients of Tν

with respect to the orthonormal system (χn). Thus T̂ν(n) = 0 if n ∈ Kν and T̂ν(n) = br(n)
otherwise. Given a sequence (b(n)) and a positive integer k, let

‖b‖1,2,k =


∞∑

j=0

(j+1)k−1∑
n=jk

|b(n)|
2


1/2

. (3.8)

Note that this differs from the pattern in condition (3.1), because in (3.8) the sum on j
starts with j = 0 rather than j = 1, and we use the numbers b(n) rather than ∆a(n). In
computing ‖T̂ν‖1,2,kν

, however, we can omit the term with j = 0, because T̂ν vanishes on
the set Kν , which includes the interval [0, kν). When k = kν , the inner sums in (3.8) run
over unions of blocks B for which inequality (3.7) holds. So

‖T̂ν‖1,2,kν
≤ 3


∞∑

j=1

(j+1)kν−1∑
n=jkν

|∆a(n)|
2


1/2

. (3.9)

Denote the measure of an interval I in [0, 1) by |I|.
Lemma 2. Suppose that T ∈ L1[0, 1) and that ‖T̂‖1,2,kν

<∞. Then

1
|Iν |

∫
Iν

|T | ≤ 500‖T̂ ‖1,2,kν
. (3.10)
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We will prove this estimate in the next section. It follows easily from (3.9) and (3.10)
that

∞∑
ν=1

∫
Iν

|Tν(x)|
x

dx ≤ 5, 000
∞∑

ν=0


∞∑

j=1

(j+1)kν−1∑
n=jkν

|∆a(n)|
2


1/2

. (3.11)

In the rest of the proof of Theorem 1, the only properties of the sequence (an) that
we need are that it tends to 0 and has bounded variation.

Lemma 3. The sums sν have the property that

1
|Iν |

∫
Iν

|sν(x)− sν(0)| dx ≤ 6π2−ν
ν∑

µ=1

2µ

 ∑
n∈Jµ

|∆a(n)|
 . (3.12)

We also delay the proof of this until the next section. Adding these estimates as ν
runs from 1 to ∞ and reversing the order of summation on the right yields that

∞∑
ν=1

1
|Iν |

∫
Iν

|sν(x)− sν(0)| dx ≤ 12π
∞∑

n=0

|∆a(n)|. (3.13)

So a series with regular coefficients is integrable if and only if the sum on ν of |sν(0)| is
finite, as specified in line (2.4) of the previous section.

Since χn(0) = 1 for all n, the sum sν(0) is just
∑

n∈Kν
br(n). Fix an index r, and

consider the cases where kν ∈ (mr−1,mr]. If kν = mr, then Kν = [0,mr). Otherwise, Kν

is a union of some but not all of the lots in [0,mr).

Adopt the convention that the last lot in the block [0,mr) is the lot “previous” to the
first one. By formulas (3.3) and (3.5), for each lot D the sum

∑
n∈D br(n) is equal to the

difference between the average of a(n) over the lot D and the average over the previous
lot. The sum of these differences of averages over all the lots in [0,mr) is equal to 0. This
makes sν(0) = 0 when kν = mr.

Now consider the other values, if there are any, of kν associated with r. For the smallest
such kν, the set Kν is the union of [0,mr−1) with the first and last lots in [mr−1,mr), and
thus sν(0) = Cr(1)− Cr(−2) in this case. For the next such kν , add in the effect of also
having the second and third lots in [mr−1,mr) and the second-last and third-last ones;
then sν(0) = Cr(3)− Cr(−4). This pattern continues, and leads to the formula∑

kν∈(mr−1,mr ]

|sν(0)| =
∑

2i<qr

|Cr(2i − 1)− Cr(−2i)|. (3.14)

So a Vilenkin series with regular coefficients is integrable if and only if∑
pr>2

∑
2i<qr

|Cr(2i − 1)− Cr(−2i)| <∞. (3.15)
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Finally, since (a(n)) has bounded variation, condition (3.15) is equivalent to condition (3.2)
and hence to the condition (1.5) that appears in the definition of sufficient symmetry.

We now justify the formal calculations relating the series S(x) to the function f .
Suppose first that the series has regular coefficients, and is integrable, representing F
say. Then for each positive integer r, the product F · (1 − φr)/mr−1 belongs to L1, and
calculating the Fourier coefficients of that product from their definition shows that they
are equal to the numbers br(n). Since F ∈ L1,

∞∑
ν=1

∫
Iν

|f(x)|
x

dx <∞, (3.16)

and then Lemmas 1 and 2 imply that condition (3.2) holds. So sufficient symmetry is
necessary for integrability of Vilenkin series with regular coefficients.

To prove the converse, suppose that the coefficient sequence (a(n)) is regular and
sufficiently symmetric. Then the numbers br(n) are all well defined, and each series∑∞

n=0 br(n)χn(x) converges uniformly. Define f(x) on the r-the corona to be the sum
of this series. Then f satisfies condition (3.16), because of the regularity and symmetry
of (a(n)). Hence there is a function F in L1 so that F = f/h.

We claim that F̂ (n) = a(n) for all n. To verify this, we consider the effect of mul-
tiplying the series S and the Fourier series of F by (1 − φr)/mr−1 for successive values
of r. Take the series S(x) · (1− φ1(x))/m0 first. It converges absolutely and uniformly to
a sum f1(x) say. Then f̂1(n) = b1(n) for all n. Consider a block of terms in the product
series, indexed by [(k− 1)m1, km1) for some positive integer k. The Vilenkin functions in
this block all take the same constant value on the set G1, and the coefficients b(n) in the
block add up to 0. So the sum of the terms in the block vanishes on the set G1, and the
same is true for the partial sums of the first Km1 terms in the series for all positive inte-
gers K. Hence f1 vanishes on G1, and since f was defined to be equal to to f1 on G0\G1,
we have that f1 = f · 1G0\G1 .

On the other hand, we also have that F · (1− φ1)/m0 = f1, because h = (1− φ1)/m0

on the set G0\G1, and φ1 ≡ 1 on G1. It then follows by computing the Fourier coefficients
of the product F · (1− φ1)/m0 = f1, that the numbers b1(n) can be written as differences
of the Fourier coefficients of F . The pattern is that in each block that is a translate of the
set [0,m1), the coefficient b1(n) is equal to F̂ (n)− F̂ (n− 1), except at the first number n
in the block. Since these coefficients can also be written in the same way as differences of
the coefficients (a(n)), we conclude that the sequence (F̂ (n)− a(n)) must be constant on
blocks that are translates of [0,m1).

We can then compare the products S(x) · (1 − φ2(x))/m1 and F · (1 − φ2)/m1 in
a similar way. From the analysis above, the difference between these product series has
coefficients that are constant on lots that are translates of [0,m1). Now the sum of the
Vilenkin functions indexed by a lot [(k− 1)m1, km1) vanishes off the set G1. So the sums
of the first Km1 terms of the difference series all vanish off G1; since the coefficients in the
difference series tend to 0, it converges uniformly to 0 off G1. For both series, the sums of
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the first Km2 terms vanish on G2, so that the difference series also converges uniformly
to 0 on G2.

By the definition of f , the product series S(x) · (1 − φ2(x))/m1 converges uniformly
to f(x) on the coronaG1/G2. Meanwhile, the series for F ·(1−φ2)/m1 must be the series for
the function obtained from f by multiplying it by 0 on G2 and by (1− φ2)/(hm1) off G2.
That function is bounded and coincides with f on G1/G2. Without loss of generality,
use our variant of the standard mapping to identify the probability space supporting the
Vilenkin functions with the interval [0, 1) with Lebesgue measure. Then the Vilenkin
system is complete, and the series for F ·(1−φ2)/m1 must converge in L2-norm to a function
that coincides almost-everywhere in G1/G2 with f . So the difference series converges to 0
in L2-norm on all of [0, 1).

It follows that the two product series have the same coefficients. Now in each block
that is a translate of the set [0,m2) by a multiple of m2,

b2(n) =
F̂ (n)− F̂ (n−m1)

m1
,

except on the first lot of m1 numbers n in the block. Since these coefficients can also be
written in the same way as differences of the coefficients (a(n)), and since the sequence
(F̂ (n) − a(n)) is already known to be constant on lots of length m1, we conclude that
(F̂ (n)− a(n)) must be constant on blocks that are translates of [0,m2).

Continuing in this manner shows that the sequence (F̂ (n) − a(n)) is constant on all
the sets [0,mr). Since this difference sequence tends to 0, it must be identically 0. This
completes our proof of Theorem 1, except for the two lemmas.

Remark 1. We delay most of our comments until the later sections of the paper, but
we mention here that the methods above also provide estimates for L1-norms. Given a
sequence (a(n)), let ‖a‖∆ be the sum appearing in inequality (1.1) and let ‖a‖Σ be the
sum appearing in inequality (1.5). Regular, sufficiently symmetric sequences form a Banach
space relative to the norm ‖ · ‖∗ ≡ ‖ · ‖∆ + ‖ · ‖Σ. The closed-graph theorem applied to
Theorem 1 implies that there must be constants A and B so that the function F represent
by a series with such coefficients satisfies

‖F‖1 ≤ A‖F̂‖∆ + B‖F̂‖Σ. (3.17)

In fact, the proof of Theorem 1 can be analysed to yield explicit constants A and B for
which this inequality holds for all F in L1.

This can be used to provide a different justification of the formal calculations used
earlier in this section. These calculations are correct for Vilenkin polynomials, and yield
the estimates specified above for the L1-norms of such polynomials. Given a series with
coefficients (a(n)) that form a regular, sufficiently symmetric sequence, let a(r) coincide
with a outside the interval [0,mr) but be equal to a(mr) on this interval; note that a(0) = a.
Then ‖a(r)‖∗ → 0 as r →∞, so that there is an index r1 for which ‖a(r1)‖∗ ≤ (1/2)‖a‖∗.

12
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Let F1 be the Vilenkin polynomial with coefficients that coincide with a − a(r1) on the
interval [0,mr1) and vanish off this interval. Then

‖F1‖1 ≤ (A+B)
∥∥∥F̂1

∥∥∥
∗

= (A+ B)
∥∥∥a− a(r1)

∥∥∥
∗
≤ (A+B)‖a‖∗.

Applying this reasoning repeatedly yields an increasing sequence of integers ri so that
‖a(ri)‖∗ ≤ (1/2)i‖a‖∗. It also yields Vilenkin polynomials Fi so that F̂i = a(ri−1) − a(ri).
Then

‖Fi‖1 ≤ (A+ B)
∥∥∥F̂i

∥∥∥
∗
≤

(
1
2

)i−1

(A+ B)‖a‖∗.

So the series
∑∞

i=1 ‖Fi‖1 converges, and hence
∑∞

i=1 Fi converges in L1-norm to some
integrable function F . It follows easily that F̂ = a.

Remark 2. The proof of Theorem 1 also shows that

‖F‖1 ≥ B‖F̂‖Σ −A‖F̂‖∆ (3.18).

This allows us to correct the erroneous statement in [6] that, for any conventional indexing
of a Vilenkin system, the sequence of Fejér kernels is always bounded in L1. This error
resulted from a misreading of [23], where this L1-boundedness is only asserted and proved
for some Vilenkin systems of bounded type. As pointed out in [3], it was shown in [20]
that for any conventional indexing of any multiplicative system of unbounded type the
sequence of Fejér kernels is not bounded in L1.

The estimates for L1-norms in the proof of Theorem 1 settle all cases of this question,
showing that, for any conventional indexing of a Vilenkin system, the sequence of Fejér
kernels is bounded if and only if the system is of bounded type. The fact that this sequence
is L1-bounded in the latter case also follows from [3] or [6].

13
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4. Proofs of the lemmas.

Proof of Lemma 3. Fix indices r and ν for which kν ∈ (mr−1,mr]. Then

sν(x)− sν(0) =
∑

n∈Kν

bn[χn(x)− χn(0)],

so that
1
|Iν |

∫
Iν

|sν(x)− sν(0)| dx ≤
∑

n∈Kν

|br(n)| sup
x∈Iν

|χn(x)− χn(0)|. (4.1)

We will show below that
|χn(x)− χn(0)| ≤ 2πnx (4.2)

for all n in Z+ and all x in [0, 1). Assuming this, we then have that the n-the term on the
right in (4.1) is majorized by 2πnxν |br(n)|. We also have the upper bound 2πñxν |br(n)| for
this term, because of the fact that χñ is the complex conjugate of χn. If n belongs to Jµ,
then so does ñ, and one of them must lie in the first half of Jµ, and therefore be bounded
above by kµ. Then the n-th term on the right in (4.1) is majorized by 2πkµx|br(n)|.
Summing this bound over all values of n in Jµ and using inequality (3.7) gives at most
6πkµx

∑
n∈Jµ

|∆a(n)|.
As noted earlier, kνx ≤ 1 for all x in Iν , so that x ≤ 1/kν for all such x. Then

kµx ≤ kµ/kν ≤ 2µ−ν . Combining these estimates for all values of µ ≤ ν yields that

1
|Iν |

∫
Iν

|sν(x)− sν(0)| dx ≤ 6π2−ν
ν∑

µ=1

2µ

 ∑
n∈Jµ

|∆a(n)|
 ,

as specified in inequality (3.12).

We complete the proof of Lemma 3 by verifying inequality (4.2). It is trivially true if
x = 0 or n = 0, because then χn(x) = 1. So we may suppose that n and x belong to coronas,
[mr−1,mr) and (1/ms, 1/ms−1] say. Our analysis then splits into three cases. If r < s, then
χr(x) = 1, and there is again nothing to prove. If r > s, then 2πnx ≥ 2πmr−1/ms ≥ 2π,
and inequality (4.2) holds because |χn(x)− χn(0)| ≤ 2 in any case.

Finally, in the case where r = s, use the fact that then n = jmr−1 +k with 0 ≤ j < pr

and 0 ≤ k < mr−1; so χn factors as φj
rχk. For these values of k, the functions χk

all coincide with 1 on the interval [0, 1/mr−1) and hence at x. This reduces matters to
estimating |φj

r(x)− 1| when 0 ≤ j < pr and x ∈ Gr−1\Gr.

We permuted the lots in the block Gr−1\Gr so that the difference |φr(x)−1| does not
decrease as x increases in the interval [0, 1/mr−1). This difference vanishes when x ∈ Gr,
and it is easy to see that the ratio |φr(x)− 1|/x attains its maximum value in [0, 1/mr−1)
when x = 1/mr. Therefore

|φr(x)− 1|
x

≤ (mr)2 sin(π/pr) ≤ 2πmr−1, (4.3)
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for all x in Gr−1. It follows that, |φj
r(x) − 1| ≤ j2πxmr−1 for these values of x. This

implies inequality (4.2), because χn(x) = φr(x)j and jmr−1 ≤ n in this case.

Proof of Lemma 2. We follow the convention that if h is an integrable function and S
is a measurable set with positive measure, then hS denotes the average of the function g
over the set S. When ν ≤ 4, we simply use the Schwarz inequality and the orthonormality
of the Vilenkin system χn to obtain that

|T |Iν
≤ [|T 2|Iν

]1/2 ≤ |Iν |−1/2‖T‖2 = |Iν |−1/2‖T̂‖2. (4.5)

For each coronet the ratio of the left endpoint to the right endpoint is at least 1/3. It
follows that each of the first four coronets has measure at least (1/3)4. Inserting this
estimate in inequality (4.5) and using the fact that the norm on the right is bounded
above by ‖T̂ ‖1,2,kν

yields the first four cases of inequality (3.10), namely that

1
|Iν |

∫
Iν

|T | ≤ 500‖T̂ ‖1,2,kν

when ν ≤ 4.

Now fix an index ν > 4, let iν = kν−4, and let

Kν(x) =
1
iν

iν−1∑
n=0

χn(x)

for all x in (0, 1]. Then nxν ≤ 2−4 for all indices n in the sum defining the function Kν . It
follows from inequality (4.2) that the real part of each term in that sum is bounded below
by 1/2 on the set Iν ; so this is also a lower bound forKν(x) on Iν . Hence |T |Iν

≤ 2|Kν ·T |Iν
,

and applying inequality (4.5) with T replaced by Kν · T yields that

|T |Iν
≤ 2|Iν |−1/2 ‖(Kν · T )̂‖2 . (4.6)

To analyse the coefficients of the product Kν · T , we transfer the group structure on
the set of functions χn to the set of nonnegative integers. The subset [0,mr) = Γr becomes
a subgroup, and the intervals [jmr, (j + 1)mr) that occur in the definition of ‖T̂‖1,2,mr

are cosets of this subgroup; this will simplify the estimation of ‖T̂ ‖kν
in the cases where

kν = mr for some value of r. If mr−1 < kν < mr, on the other hand, then kν = 2smr−1 for
some integer s, and each interval [jkν , (j + 1)kν) is a union of 2s adjacent cosets of Γr−1.
The coefficients of Kν ·T are given by the convolution, associated with the group structure
on the set {χn}, of the functions K̂ν and T̂ . This convolution is well-defined, because K̂ν

has finite support.

Let (T̂ )j be T̂ multiplied by the indicator function of the set [jkν , (j + 1)kν). By
Young’s inequality for convolution∥∥∥K̂ν ∗ (T̂ )j

∥∥∥ ≤ ∥∥∥K̂ν

∥∥∥
2

∥∥∥(T̂ )j

∥∥∥
1

= (iν)−1/2
∥∥∥(T̂ )j

∥∥∥
1
. (4.7)
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Fix ν, and suppose temporarily that the various functions K̂ν ∗(T̂ )j have disjoint supports.
Then(∥∥∥K̂ν ∗ T̂

∥∥∥
2

)2

=
∞∑

j=0

(∥∥∥K̂ν ∗ (T̂ )j

∥∥∥
2

)2

≤
(

1
iν

) ∞∑
j=0

(∥∥∥(T̂ )j

∥∥∥
1

)2

=
(

1
iν

) (∥∥∥T̂∥∥∥
1,2,kν

)2

.

Combining this with inequality (4.6) yields that

|T |Iν
≤ 2√

iν |Iν |
∥∥∥T̂∥∥∥

1,2,kν

.

If iν = mr for some index r, then the functions K̂ν ∗ (T̂ )j have disjoint supports for
the following reasons. In this case, the support of K̂ν is included in the subgroup Γr,
and each interval [jkν , (j + 1)kν) is a union of cosets of this subgroup. Then the support
of K̂ν ∗ (T̂ )j is still included in this union of cosets.

If iν differs from all the numbers mr, on the other hand, then, as we show below, we
can split T̂ into at most three pieces with disjoint supports so that if T̂ is replaced by any
of these pieces then the the supports of the corresponding functions K̂ν ∗ (T̂ )j are disjoint.
We then have that in any case

|T |Iν
≤ 6√

iν |Iν |
∥∥∥T̂∥∥∥

1,2,kν

.

Inequality (3.10) follows from this, because |Iν | ≥ (1/3)xν and

iνxν ≥ 1
64
kνxν ≥ 1

64

1
2
.

Finally, we specify the splitting of T̂ when mr < iν < mr+1 for some nonnegative
integer r. The support of K̂ν is a subset of the subgroup Γr+1, so that the convolution
of K̂ν with a function vanishing outside some coset of Γr+1 will also vanish outside that
coset. We carry out the splitting separately in each coset of Γr+1.

Such a coset will be covered by the finitely-many successive intervals [jkν , (j + 1)kν),
with j = j0, j1, · · · , jq say, that intersect nontrivially with the coset. Split T̂ into pieces
Û , V̂ , and Ŵ so that, on this coset, Û coincides with the restriction of the function T̂j0 to
the coset, while V̂ coincides with the restriction of the sum of the functions T̂jp

for odd
integers p, and Ŵ coincides with the restriction of the sum of the functions T̂jp

for positive
even integers p. This produces large enough gaps in the supports of each of the functions
Û , V̂ , and Ŵ for their convolutions with K̂ν to have the desired disjointness property.
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5. Another Enumeration for Some Vilenkin Systems.

The functions φr generate the whole Vilenkin system, with every member of the
system having a unique representation as a product of finitely-many powers φqr

r , where
0 ≤ qr < pr for all r. The key property of these generators is that φr belongs to the
r-th corona Γr\Γr−1 for all r. Different selections of functions with this property generate
the same Vilenkin system, but lead to different conventional enumerations of that system.
The effect of such changes on a Vilenkin series is to permute the terms in the series. Such
permutations have no effect on integrability, but in some cases can change the regularity
of the coefficient sequence.

Start, for instance, with any strictly-decreasing convex sequence (a(n)) that tends
to 0 slowly enough that

∑∞
0 a(n) = ∞. Then choose a sequence (pr) of prime numbers as

follows. Use the fact that
∑∞

0 a(n) = ∞ to choose an integer N1 so that
∑N1

n=0 a(n) > 2;
then use the fact that a(n) → 0 as n→∞ to choose p1 so that a((p1−1)/2) < (1/2)a(N1).
Given the first j − 1 values of pr, let mj−1 be their product, and choose Nj so that∑Nj

n=mj−1
a(n) > 2mj−1; then choose pj so that a((mj − 1)/2) < (1/2)a(Nj).

Rather than using the functions φr to generate the Vilenkin system, use their pow-
ers φ(pr+1)/2

r . Part of the effect of this change is to permute the various lots in the r-th
corona so that each lot where some coefficients is at least a(Nr) is adjacent to a lot where all
the coefficients are at most a(Nr)/2. This makes the variation of the permuted coefficient
sequence over the r-th corona at least

1
mr−1

Nr∑
n=mr−1

1
2
a(n) > 1.

Thus the permuted coefficient sequence does not have bounded variation, and hence is not
regular.

The standard enumeration of a Vilenkin system uses the fact that each nonnegative
integer has a unique representation as a sum of terms qrmr−1 with 0 ≤ qr < pr for all r.
Call the Vilenkin system fully odd if pr > 2 for all r. In that case, each integer, including
the negative ones, has a unique representation as a sum of finitely-many terms qrmr−1,
where now −pr/2 < qr < pr/2 for all r.

It also turns out that each function in a fully odd Vilenkin system has a unique
representation as a product of finitely-many powers φqr

r , where again −pr/2 < qr < pr/2
for all r. To verify this, argue by induction on the integer s for which the Vilenkin
function, χ say, belongs to the set Γs\Γs−1. Then χ = φus

s χ′ for a unique integer us with
0 < us < ps and a unique function χ′ in the set Γs−1. If us < ps/2, simply let qs = us

and use the corresponding representation of χ′ as a product of powers φqr
r with r < s and

−pr/2 < qr < pr/2 for all such indices r. If ps/2 < us < ps, let qs = us − ps. Then
φus

s = φqs
s χ

′′, where χ′′ ∈ Γs−1. The product χ′χ′′ also belongs to the subgroup Γs−1

and so also has a unique representation as a product of powers φqr
r with r < s and with

−p/r/2 < qr < pr/2 for all such indices r. Multiplying this by φqs
s then gives the desired

representation of χ.
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This simple correspondence between representation of integers and representations of
functions in a fully-odd Vilenkin system sets up an enumeration of the system using the
full set of integers as an index set. Call this enumeration as a symmetric indexing, and
use the different notation (ψn)∞n=−∞ for the Vilenkin functions when they are enumerated
symmetrically.

When the system is fully-odd, symmetric indexing simplifies the description of the no-
tion of conjugate function that was introduced in [21]. The idea is to split each corona in
half and use multipliers that take different constant values in the two halves of the corona.
This was originally done for conventionally-indexed multiplicative systems. For symmetri-
cally indexed fully odd systems, the conjugate series of

∑
n cnψn is −i∑n 6=0 sgn(n)cnψn.

The multiplier −i·sgn(n) is the same as the one used to define the conjugate of the complex
form of a trigonometric series.

The following conclusion comes from [10]; as pointed out there, some cases of it were
known earlier.

Theorem 4. For a symmetrically-indexed fully-odd Vilenkin system, if a series and its
conjugate are both integrable, then the coefficients (cn) in the series satisfy the condition
that

∞∑
n=1

|cn|
n

<∞. (5.1)

We note that if the coefficient sequence is odd, that is if c−n = −cn for all n, then
this condition is equivalent to the requirement that

∞∑
n=1

|cn − c−n|
n

<∞. (5.2)

As in the trigonometric case, we call any coefficient sequence (cn)∞n=−∞ sufficiently sym-
metric if condition (5.2) holds. We call the sequence regular if it tends to 0 at ±∞ and its
differences ∆cn are small enough that

∞∑
ν=0


∞∑

j=1

 ∑
j2ν≤|n|<(j+1)2ν

|∆cn|


1/2

<∞. (5.3)

We do not know if regularity with respect to a conventional indexing implies regularity
with respect to a symmetric indexing. A sequence of coefficients can be regular for a
symmetric indexing, however, without being regular for any conventional indexing. We
specify how this can happen for systems of bounded type, and let the reader modify the
example suitably for other systems. Let α be a positive constant, and let

cn =
{

[1/ log(2 + n)]α if n ≥ 0;
0 if n < 0.
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Then the sequence (cn)∞−∞ is convex on the set of nonnegative integers and 0 elsewhere
and hence is regular.

Consider the series
∑∞

n=−∞ cnψn and the corresponding series,
∑∞

k=0 anχk say, for a
conventional indexing using the same coronas. In each corona, half of the coefficients ak

are equal to 0, because they correspond to coefficients cn′ where n′ < 0. It follows from
this and the boundedness of the sequence (pr) that there is a positive constant C so that

‖a‖∆ ≥ C
∞∑

r=0


∞∑

j=r

1
j2α


1/2

.

The double sum on the right is finite if and only if (2α − 1)/2 > 1, that is α > 3/2. So
when 0 < α ≤ 3/2, the symmetrically indexed series in this class has a regular coefficient
sequence but the conventionally indexed series does not. By Theorem 4 above, this series
is not integrable when α ≤ 1; by Theorem 5 below, the series is integrable when α > 1.
When 1 < α ≤ 3/2, the series is integrable but does not have regular coefficients for any
conventional indexing using the same coronas.

In our proof of Theorem 1, regularity for the conventional indexing is used to partly
control differences between coefficients in the two halves of each corona; this accounts for
the fact that this form of regularity implies sufficient symmetry when the Vilenkin system
is of bounded type. As the example above shows, regularity for a symmetric indexing does
not provide as much control on the sizes of differences between coefficients in opposite
halves of coronas. Let nr = (mr − 1)/2, and note that in a symmetric indexing the
subgroup Γr corresponds to the set of integers in the interval [−nr, nr].

Definition. Given a fully-odd Vilenkin system, call a sequence (cn)∞n=−∞ structurally
regular if it is regular and satisfies the further condition that

∞∑
r=1

|cnr
− c−nr

| log pr <∞. (5.4)

For systems of bounded type, structural regularity is equivalent to the combination
of regularity and sufficient symmetry. For systems of unbounded type, structural regular-
ity does not imply sufficient symmetry, nor does it follow from sufficient symmetry and
regularity.

Theorem 5. Suppose that the Vilenkin system is fully odd and symmetrically indexed.
If a series has structurally regular coefficients and is sufficiently symmetric, then the series
is integrable. If a series is integrable and has regular coefficients, then the coefficients are
sufficiently symmetric.

Proof. Suppose first that the coefficients are structurally regular, and consider the meth-
ods used to prove Theorem 1. There, the first lot in each corona received special attention,
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because it had to be regarded as the next lot after the last one in the corona. For sym-
metric indexing, each corona splits into positive and negative halves, and the leftmost
negative lot should be viewed as being the next one after the rightmost positive lot. Con-
dition (5.4) controls the size of the coefficients of the function f in these leftmost negative
lots. The factor log pr in the condition is appropriate because such estimates are needed
for every choice of kν between nr−1 and nr. Similarly one needs about log pr estimates
for the `1-norm of the restriction of ∆cn to the leftmost and rightmost lots in the corona;
condition (5.3) provides estimates for about that many copies of that norm.

So, for symmetric indexing and structurally regular coefficients, the methods used
to prove Theorem 1 show that the series is integrable if and only if the coefficients are
sufficiently symmetric. All that remains is to show that the “only if” part here persists
when structural regularity is weakened to regularity.

If the coefficient sequence is even, that is if c−n = cn for all n, then conditions 5.3
and 5.4 both hold automatically, and then regularity implies integrability. Every sequence
splits uniquely as a sum of an even sequence and an odd sequence. Suppose that the
original sequence is regular and that the series is integrable. Then the two series coming
from the even and odd parts of the coefficient sequence also have these properties. The
conjugate of the odd series is also integrable because that conjugate is even and has regular
coefficients. By Theorem 4 applied to the odd part of the series, the coefficient sequence
must be sufficiently symmetric. This completes the proof of Theorem 5.

For fully-odd Vilenkin systems of bounded type, structural regularity is equivalent,
as noted earlier, to the combination of regularity and sufficient symmetry. So, in this
case, integrability of a symmetrically indexed series with regular coefficients is equivalent
to sufficient symmetry. This does not follow directly from the statement of Theorem 1,
because regularity for symmetric indexing does not imply regularity for any conventional
indexing, but the method of proof is the same.

As in the case of Theorem 1, the proof of Theorem 5 yields estimates for L1-norms
of Vilenkin polynomials in terms of the quantities (5.2), (5.3), and (5.4). For a symmetric
indexing of a fully-odd system, form symmetric partial sums, their (C, 1) means, and the
corresponding Fejér kernels in the usual way; these will not be the same as the partial
sums, means, and kernels for any conventional indexing. The symmetric Fejér kernels
satisfy the hypotheses of Theorem 5 in a uniform way, because their coefficients are even,
and the restrictions of these coefficients to the nonnegative integers form convex sequences.
It follows that these kernels form a bounded sequence in L1, even if the Vilenkin system
is not of bounded type. As noted at the end of Section 3, the corresponding statement is
false for any conventional ordering of any system of unbounded type.
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6. Related Questions.

In this section, we describe the situations where conclusions about norm convergence
in L1 follow easily from the main results in this paper; we hope to return to the harder cases
of these questions in another paper. Then we discuss regularity conditions on sequences
that imply integrability of some Vilenkin series but that do not force the sequences to have
bounded variation. These conditions do not imply condition (1.5).

Kolmogorov [14] proved that cosine series with (quasi)convex coefficients, (cn)∞n=−∞
say, converge in L1-norm if and only if

cn log |n| → 0 as n→ ±∞. (6.1)

It was shown in [2] that the same criterion for norm convergence holds for integrable
trigonometric series with coefficients satisfying weak local forms of the regularity condi-
tion (1.5); no symmetry condition was required in that analysis. Earlier papers cited in [2]
contained similar results on this question, with forms of regularity that are locally weaker
than quasiconvexity but stronger than those used in [2].

We seek counterparts of criterion (6.1) for Vilenkin series. The method of proof in [2]
transfers when the system is of bounded type and conventionally indexed, and when the
system is fully-odd and symmetrically indexed. To see this, suppose first that the system
is of bounded type and that the coefficients, (an)∞n=1 say, are regular with respect to some
conventional order. Then the series represents some integrable function. It follows that
the subsequence of partial sums of order mr converges in L1-norm to some function, F
say, and the series is the Vilenkin series of F .

As pointed out at the end of Section 3, the sequence of Fejér kernels is norm-bounded
in L1 for systems of bounded type. Then the Fejér means of the series converge in L1-
norm to F , and the same is true for the de la Vallée-Poussin means, VN (F ) say. Follow the
standard convention for Vilenkin series by letting SN (F ) denote the sum of all the terms
in the series with index strictly less than N . If the series converges in L1-norm, then it
must converge to F . So L1-norm convergence occurs if and only if

‖VN (F )− SN (F )‖1 → 0 as N →∞. (6.2)

The coefficients of VN (F )−SN(F ) vanish outside the interval [N, 2N −2]; within that
interval, they coincide with the coefficients of VN (F ), that is with the coefficients in the
series multiplied by the linear sequence that equals 1 at N − 1 and 0 at 2N − 1. Let

GN (F ) = VN (F )− SN (F ) + aNDN , (6.3)

where DN denotes the N -the Dirichlet kernel. As in [2], an analysis of the regularity of
the coefficients of GN (F ) show, via Remark 1, that ‖GN (F )‖1 → 0 as N → ∞. It then
follows from equation (6.3) that condition (6.2) holds if and only if

‖aNDN‖1 → 0 as N →∞. (6.4)
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Hence the series converges in L1-norm if and only if condition (6.4) holds. This corresponds
to the norm-convergence criterion for trigonometric series since in that case ‖DN‖1 is of
the same order as logN as N →∞.

Applying Remark 1 yields a constant C so that ‖Dn‖1 ≤ C log n for all n. So L1-norm
convergence follows here from the condition that an log n → 0 as n → ∞. In some cases,
the estimates coming from Remark 1 are too high; for instance, the Dirichlet kernels of
order mr all have L1-norm 1. For many other indices N , however, the kernels do have
order logN . For the Walsh system, this fact and the bounded variation of the coefficient
sequence were used [2] to deduce from condition (6.4) that the series converges in L1-norm
only if an log n→ 0 as n→∞.

Now suppose that the Vilenkin system is fully-odd and symmetrically indexed. The
discussion above transfers almost verbatim for series with regular even coefficients, and
yields that such series converge in L1-norm if and only if

‖cNDN‖1 → 0 as N → ±∞. (6.5)

In this context, the symbol DN denotes the symmetric version of the Dirichlet kernel.
When the system is of bounded type, one can transfer a symmetrization argument used
in [2, §3] for trigonometric series to reduce the analysis of L1-norm convergence of any
series to the case of even series. It follows that, for fully-odd systems of bounded type,
a series with structurally regular coefficients (cn) converges in L1-norm if and only if
condition (6.5) holds. In this case, and the others discused above, the methods still work
when the regularity condition is weakened and made local in the style of [2].

We now discuss the possibility of deducing integrability from versions of condition (1.1)
that do not force the sequence (an) to have bounded variation. The authors of [7] point
out that their method still works for cosine series when the inner sum of absolute values
in (1.1) is replaced by the supremum of the quantities∣∣∣∣∣∣

m∑
n=j2ν

∆an

∣∣∣∣∣∣ (6.6)

over all values of m with j2ν ≤ m < (j+ 1)2ν . It may also be possible to use the methods
in [2] and in the present paper with the same weaker version of regularity.

Summing differences, as above, before taking absolute values, controls the sizes of
the difference an − am for certain pairs of integers m and n. As pointed out at the end
of [2], the simplest integrability criterion of this kind seems to be a dual version of the
condition used by Bernstein [5] and Szasz [22] to prove absolute convergence for certain
Fourier series.

To state that dual condition, revert to writing coefficients as functions on the set Γ of
all members in the Vilenkin system. Given such a function a on Γ and a member γ of Γ,
let a(· − γ) denote the function on Γ given by

χ 7→ a (χγ) for all χ in Γ.
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This notation confounds multiplication and addition, but it conforms with the use of
the additive semigroup of nonnegative integers or the additive group of all integers to
index the multiplicative group Γ. Suppose intially that Γ is indexed conventionally, and
recall the positive integers kν used in Section 3. Say that a function a on Γ belongs to the
homogeneous Besov space Ḃ(1/2, 2, 1)(Γ) if

∞∑
ν=1

2−ν/2 ‖a− a (· − χkν
)‖2 <∞. (6.7)

One of the main properties of these spaces is having a multitude of equivalent defini-
tions [18]. For instance, when Γ is fully odd and symmetrically indexed, one can interlace
the sequence (nr) with a sequence (tν), having similar properties to (kν), and show that
condition (6.7) is then equivalent to requiring that

∞∑
ν=1

2−ν/2 ‖a− a (· − ψtν
)‖2 <∞. (6.8)

This is so even though it rarely happens that χkν
= ψtν

. The most enlightening char-
acterization of Ḃ(1/2, 2, 1)(Γ) is that the function a should differ by a constant from the
coefficients of a function, F say, satisfying the requirement that

∞∑
ν=1

2−ν/2 ‖F · 1Iν
‖2 <∞. (6.9)

This is a key endpoint case of a large family [13] of inclusions and equivalences. The elemen-
tary details for the trigonometric version of the equivalence of conditions (6.7) and (6.9)
are presented at the end of [2]. That method transfers easily to the present context. It
also shows that conditions (6.8) and (6.9) are equivalent for fully-odd systems.

The connection with integrability is that condition (6.9) implies, via Cauchy-Schwarz,
that F ∈ L1(0, 1). On the other hand, in Theorem 1, our deduction of integrability
follows from regularity and sufficient symmetry proceeded via Lemmas 2 and 3, which
provide estimates for the L2 and L∞-norms of restrictions of parts of the function f
to the sets Iν . Estimates for the L2-norms of the restrictions of F to the same sets
follow immediately, and they combine to give condition (6.9). So regularity and sufficient
symmetry of the coefficients in a Vilenkin series imply that the coefficients belong to the
space Ḃ(1/2, 2, 1)(Γ).

Arguments using the sizes of the quantities (6.6) also seem to lead to estimates for L2

and L∞-norms over the sets Iν , and then to condition (6.9). This means that the sequences
to which these arguments are applied must actually satisfy the weaker and simpler condi-
tion (6.7). In principle, it should be possible to deduce (6.7) or (6.8) from regularity and
sufficient symmetry by direct estimates on the group Γ, rather than proceeding via (6.9).
This program was carried out for the trigonometric case at the end of [2]. It turned out
to be nearly as complicated as the route via the counterpart of condition (6.9), and then
a separate argument was required for the part of Theorem 1 showing that regularity and
integrability imply sufficient symmetry. Presumably that program can be carried out for
Vilenkin systems, with the regularity condition weakened as suggested near line (6.6).
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[22] O. Szǎsz, Fourier series and mean modulus of continuity, Trans. Amer. Math. Soc.
42 (1937), 366–395.

[23] N. Ya. Vilenkin, On a class of complete orthonormal systems, Izv. Akad. Nauk. SSSR
Ser. Mat. 11 (1947), 363-400; translated in Amer. Math. Soc. Transl. 28 (1963),
1–35.

[24] W.R. Wade, Vilenkin-Fourier series and approximation, Colloquia. Math. Soc. János
Bolyai 58, 699–734; also known as Approximation Theory, Kecskemét (Hungary),
1990, edited by J. Szabados and K. Tandori, North Holland, Amsterdam, New York,
1991.

[25] W.R. Wade, Review of [12], Bull. Amer. Math. Soc. 26 (1992), 348–359.

[26] S. Yano, On Walsh-Fourier series, Tôhoku Math. J. 3 (1951), 223–242.
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