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1. SURNAME: Schiebinger FIRST NAME : Geo↵rey
MIDDLE NAME(S): Robert

2. DEPARTMENT/SCHOOL: Mathematics

3. FACULTY: Science

4. PRESENT RANK: Assistant Professor SINCE: 2019

5. POST-SECONDARY EDUCATION

(a) Degrees:

University or Institution Degree Subject Area Dates

UC Berkeley Ph.D. Statistics 2016
Stanford University M.S. Electrical Engineering 2011
Stanford University B.S. Mathematics 2011

(b) Title of Dissertation and Name of Supervisor

Title: “Sparse Inverse Problems: The Mathematics of Precision Measurement”
Supervisor: Benjamin Recht

6. EMPLOYMENT RECORD

(a) Prior to coming to UBC:

University, Company or Organization Rank or Title Dates

Massachusetts Institute of Technology Postdoctoral Fellow 2016 - 2019
Broad Institute of MIT and Harvard Postdoctoral Fellow 2016 - 2019

(b) At UBC:

Rank or Title Dates

Assistant Professor 2019 - current.

7. LEAVES OF ABSENCE

University, Company or Organization

at which leave was taken

Type of leave Dates

UBC Parental 03/2021 – 05/2021
UBC Parental 06/2023 – 08/2023

8. TEACHING

(a) Areas of special interest and accomplishments: Mathematical foundations of data science, mathematical
biology, probability, statistics, optimization, optimal transport, single cell analysis

(b) Courses taught at UBC:

Session Course Scheduled Class Hours taught
number hours size Lectures Tutorials Labs Other



2019-20 WT1 MATH 612D 10 3 hrs/wk
2019-20 WT2 MATH 318 105 3 hrs/wk
2020-21 WT1 MATH 612D 16 3 hrs/wk
2020-21 WT2 MATH 318 100 3 hrs/wk taught half
2021-22 WT2 MATH 318 100 3 hrs/wk
2022-23 WT1 BME 371 100 3 hrs/wk
2022-23 WT1 MATH 612D 17 3 hrs/wk
2023-24 WT2 MATH 318 100 3 hrs/wk

(c) Graduate/undergraduate students supervised and/or co-supervised:

Student name Program type Dates Principal

supervisor

Co-supervisor(s)

Zhang, Stephen M.Sc. 2019-2021 GRS
Matsumoto, Tim M.Sc. 2020-current GRS
Bonham-Carter, Rebecca M.Sc. 2020-current GRS
Zand, Roomina M.Sc. 2020-current GRS
Greenstreet, Laura USRA 2020 GRS
Muglich, Darius USRA 2020 GRS
Afanassiev, Anton Ph.D. 2021-current GRS
Gadhiwala, Nitya M.Sc. 2021-2023 GRS and Omer Angel
Gadhiwala, Nitya Ph.D. 2023-current GRS and Omer Angel
Kubal, Sharvaj M.Sc. 2021-2023 GRS and Yaniv Plan
Kubal, Sharvaj Ph.D. 2023-current GRS and Yaniv Plan
Doebeli, Carlos USRA 2021 GRS
Cai, Zhenglun Directed Study 2021 GRS
Chakraborty, Parajit M.Sc. 2022-current GRS and Omer Angel
Zhang, Irena M.Sc. 2022-current GRS
Ma, Yujia WLIURA 2022 GRS
Boyle, Cole M.Sc. 2023-current GRS

Student awards

• Stephen Zhang won the Best Poster Prize in the 2020 Society for Mathematical Biology meeting.

• Becca Bonham Carter won the 2022 Dr. Deepak Kaura award for students conducting interdisci-
plinary research in applied mathematics and medicine.

(d) Student committees and thesis reading:

Student name Degree Role Department Date

Johnson, Jeanette B.S. Oral exam committee member Microbiology and Immun. Dec, 2019
Sullivan, Kaitlin M.S. Oral exam committee member Neuroscience 2020 - 2022
Salehi, Sohrab Ph.D. University examiner Statistics 2021
Pattie Ye M.S. graduate supervisory committee Bioinformatics 2022 - 2024
Brett Kiyota M.S. graduate supervisory committee GSAT 2022 - 2024
Rafi Abdul Ph.D. graduate supervisory committee SBME 2022 - 2023
Andrea Cossa Ph.D. graduate supervisory committee Istituto Europeo di Oncologia 2021 - 2024

(e) Continuing education activities:

(f) Visiting lecturer (indicate university/organization and dates):

(g) Course development:



• In Fall 2019, I created a new graduate course on Single Cell Analysis (Math 612D), and I taught it
for a second time in Fall 2020. It has been well attended, with 10 students in 2019 and 16 students
in 2020 registered. Regularly over 20 attended lectures. The students came from diverse programs
including Mathematics, Statistics, Computer Science, Zoology, Developmental Biology, Biomedical
Engineering, and Physiology. The course covers foundational mathematical tools that are useful in
analyzing high-dimensional single-cell datasets, and modelling developmental stochastic processes.
We cover basic probability theory, statistical inference, convex optimization, Markov stochastic
processes, and advanced topics in optimal transport. This course was o↵ered again in Fall 2022 as
a PIMS Network Course.

• I also modified the content of BME 371 Transport Phenomena in Cells and Tissues to include
material on optimal transport.

(h) Employees supervised:

Employee Type Dates Co-supervisor(s)

Greenstreet, Laura USRA 2020 –
Muglich, Darius USRA 2020 –
Matsumoto, Tim WLI 2020 –
Afanassiev, Anton USRA 2020 –
Lavenant, Hugo PDF 2019 - 2020 Y.H. Kim, B. Pass
Heitz, Matthieu PDF 2021 - current –
Warren, Andrew PDF 2022 - current Y.H. Kim
Deb, Nabarun PDF 2022 - 2023 Y.H. Kim
Ventre, Elias PDF 2022 - 2024 –
Doebeli, Carlos USRA 2021 GRS
Yao, Rentian PDF 2024 - current –
Zhao, Wenjun PDF 2024 - 2025 Y.H. Kim and K Dao Duc

RA – research assistant, USRA – Undergraduate Student Research Awards, PDF – post-
doctoral fellow, WLI – work learn international

Postdoctoral placement

• Hugo Lavenant is now an Assistant Professor in the Department of Decision Sciences of Bocconi
University in Milan, Italy.

• Nabarun Deb is now an Assistant Professor of Econometrics and Statistics in the Chicago Booth
School of Business at the University of Chicago.

(i) Other:

9. SCHOLARLY AND PROFESSIONAL ACTIVITIES

(a) Areas of special interest and accomplishments

The following is an excerpt from the attached research statement:

Biology has entered a new era of precision measurement and massive datasets. Techniques like single-
cell RNA sequencing (scRNA-seq) and single-cell ATAC-seq have emerged as powerful tools to profile cell
states at unprecedented molecular resolution. One of the most exciting prospects associated with this new
trove of data is the possibility of studying temporal processes, such as di↵erentiation and development.
If we could understand the genetic forces that control embryonic development, then we would have a
better idea of how cell types are stabilized throughout adult life and how they destabilize with age or in
diseases like cancer.

This would be within reach if we could analyze the dynamic changes in gene expression, as populations
develop and subpopulations di↵erentiate. However, this is not directly possible with current measure-
ment technologies because they are destructive (e.g. cells must be lysed to measure expression profiles).



Therefore, we cannot directly observe the waves of transcriptional patterns that dictate changes in cell
type. In response, there has been a flurry of recent work on developing methods to infer trajectories from
static snapshots of gene expression profiles. However, there is relatively little theoretical understanding
of this statistical inverse problem; if we are to rely on trajectory inference to understand disease, develop
new therapies, and engineer tissues, we need to know when to trust the results.

My research group is developing a rigorous statistical framework for understanding the developmental
trajectories of cells in a dynamically changing, heterogeneous population based on static snapshots along
a time-course. The framework is based on a simple hypothesis: over short time-scales cells can only
change their expression profile by small amounts. We formulate this in precise mathematical terms using
a classical tool called optimal transport (OT), and we propose that this optimal transport hypothesis is
one of the first fundamental mathematical principles of developmental biology. Compared to related fields
like evolution and population genetics, developmental biology has been relatively non-mathematical. This
OT-hypothesis leads to a rigorous mathematical theory of development, broadly interpreted to include
any population of cells changing over time (e.g. tumorigenesis, disease progression, aging, wound healing,
cellular reprogramming etc). My 2021 CIHR Project Grant on this topic was ranked first in Canada,
and for this I was awarded the 2021 Maude Menten Prize in Genetics.

Please see the research statement at the end of this document for more.

(b) Research or equivalent grants (indicate under COMP whether grants were obtained competitively (C) or

non-competitively (NC)):

Granting

agency

Subject COMP $ per year Dates Principal

investigator

Co-

investigator(s)

UT
CLIMB

Development of a
cell agent-based
virtual human lung

C $100,000 to GRS 2024 - 2027 N. Yachie GRS, Zandstra,
De Boer, Shak-
iba

Michael
Smith
Health
Research
BC

Towards a Mathe-
matical Theory of
Development

C $80,000 2022 - 2027 GRS

HOPE
Wellcome

T-cell induction
and lineage tracing

C $40,000 USD to GRS 2022 - 2023 P. Zandstra GRS

GenomeBC
PIF

A spatial transcrip-
tomics technology
of unprecedented
scale

C $250,000 2022 - 2023 GRS and N.
Yachie

Maud Menten New
PI Prize in Genetics

C $30000 2021 - 2022 GRS

CIHR
Project
Grant

Illuminating the ge-
netic forces driv-
ing development by
profiling with sin-
gle cell RNA-seq at
thousands of time-
points

C $170,000 2021 - 2026 GRS N. Yachie and
K. Sugioka

CIHR
Project
Grant

Cytokine networks
controlling myeloid
cell mediated im-
munosuppression in
colon cancer

C $164,000 2021 - 2026 Ken Harder GRS

NSERC
Discovery

Towards a mathe-
matical theory of
development

C $41,000 2020 - 2025 GRS –



NSERC
Early
Career

Towards a mathe-
matical theory of
development

C $12,500 2020 GRS –

NFRF
Explo-
ration

Towards a mathe-
matical theory of
development

C $125,000 2020 - 2022 GRS Y.H. Kim (50%)

BWF
Career
Award
at the
Scientific
Interface

Analyzing develop-
mental processes
with optimal trans-
port

C $166,581 2018 - 2023 GRS –

STAIR Illuminating the
genetic forces driv-
ing development by
profiling with single
cell transcriptomics
at thousands of
time-points

NC $20,000 2020 GRS Kenji Sugioka
(50%)

Chan
Zucker-
berg
BioHub

Chan Zuckerberg
Initiative Investiga-
tor grant

C $157,051 2018-2019 Philippe
Rigollet

GRS (50%)

NSF Graduate Research
Fellowship

C $71,317 2011-2013 GRS –

(c) Invited presentations (Conferences, workshops):

1. Statistical Learning and Data Science / Nonparametric Statistics at Columbia University, New York,
United States. May 2018.

2. Chan-Zuckerberg Initiative Investigator Meeting, Santa Cruz, United States. April 2018.

3. UCLA Computational Genomics Winter Institute, Los Angeles, United States. February 2018.

4. How to get from A to B: Transitions in Biology Princeton Center for Theoretical Science, Princeton,
United States. December 2017.

5. Beyond Convexity: Emerging Challenges in Data Science, Oaxaca, Mexico. October 2017.

6. OTML Workshop at NeurIPS, Vancouver, 2019.

7. LMRL Workshop at NeurIPS, Online, 2020.

8. Molecular Biology Society of Japan Keynote, Online, 2020

9. Society of Mathematical Biology, June 2021.

10. CMS Summer School on Optimal Transport, June 2021.

11. Integrating Single Cell Analysis and Mathematics, December 2021.

12. Workshop on Connections between interacting particle dynamics and data science, Isle of Skye, May
2022 (rescheduled from May 2021 due to Covid).

13. IFML + Kantorovich Initiative Retreat, February. 2023. Seattle, WA

14. RIKEN BDR Symposium 2023 “Transitions in Biological Systems”. Kobe, Japan. March 2023.

15. ICERM, Brown, RI, USA. May 2023

16. FOCM, Paris, France. June 2023. (declined due to parental leave)

17. ICIAM workshop on Challenges in single cell data science: theory and application. August 2023.

18. AI and Cell Fate, Beijing, China. October 2023. (declined due to parental leave)

19. WPI PRIMe International Symposium. Osaka, Japan. February 2024.

(d) Invited presentations (seminars, colloquia, lectures):

1. Duke Computational Biology and Bioinformatics. November 2023



2. Osaka University, Japan. August 2023

3. PIMS-NSF Summer School on Optimal Transport. June 2022. Seattle, WA

4. UC Riverside Interdisciplinary Center for Quantitative Modeling in Biology, April 2022.

5. Oxford CSML Seminar, April 2022.

6. UBC IAM Faculty Seminar, September 2020.

7. UBC Life Science Institute Seminar, March 2020 (cancelled due to Covid 19).

8. Yale Applied Math Seminar, March 2020 (cancelled due to Covid 19).

9. UBC Cellular and Physiological Sciences Seminar, Vancouver, Canada. December 2019.

10. UBC MathBio Seminar, Vancouver, Canada. Sept 2019.

11. UBC Statistics Colloquium, Vancouver, Canada. Sept 2019.

12. Duke Statistics Department Colloquium, Durham, United States. Feb 2019.

13. UC Irvine Statistics Seminar, Irvine, United States. Feb 2019.

14. Statistics and Operations Research Seminar, University of North Carolina Chapel Hill, Chapel Hill,
United States. Feb 2019.

15. UC Berkeley Biostatistics Seminar, Berkeley, United States. Feb 2019.

16. Department of Bioengineering Seminar, UW Madison, Madison, United States. Feb 2019.

17. Department of Mathematics Seminar, University of British Columbia, Vancouver, Canada. Feb
2019.

18. Stanford Genetics Departmental Colloquium, Stanford, United States. March 2018.

19. Klarman Cell Observatory Scientific Advisory Board Meeting, Cambridge, United States. May 2018.

20. Duke Applied Math and Duke Genome Sciences Joint Colloquium, Durham, United States. January
2018.

21. Harvard Theory Lunch, Harvard, United States. December 2017.

22. Single cell analytics group seminar, MIT, Cambridge, United States. November 2017.

23. Models, Inference, and Algorithms Seminar, MIT, Cambridge, United States. October 2017.

24. Centers of Excellence in Genomic Science 15th Annual Grantee Meeting, Seattle, United States.
September 2017.

25. Klarman Cell Observatory Scientific Advisory Board Meeting, Cambridge, United States. May 2017.

26. Laboratory for Information and Decision Systems Seminar, MIT, Cambridge, United States. Septem-
ber 2016.

27. Models, Algorithms, and Inference, Cambridge, United States. February 2016.

28. Stanford Statistics Colloquium, Stanford, United States. October 2015.

29. UW Madison SILO Seminar, Madison, United States. September 2015.

30. Risk Analysis Seminar, Berkeley, United States. April 2014.

31. Berkeley Statistics Annual Research Symposium, Berkeley, United States. March 2014.

32. Computational Algebraic Geometry Seminar, Bonn, Germany. November 2013.

(e) Contributed presentations (conferences, workshops):

1. Statistical Challenges in Single Cell Analysis, Ascona, Switzerland. May 2017. (Prize for ”Best

Contribution to the Conference”).

(f) Conference organization:

1. Co-organizer, Pacific Interdisciplinary Hub on Optimal Transport Summer School, University of
Washington, June 19 — July 1 2022.

(g) Other: (e.g. visitors)

10. SERVICE TO THE UNIVERSITY



(a) Memberships on committees, including o�ces held and dates

I was on the UPER committee. from 2019 - 2020
I led the UPER sub-committee on Research and Communication.
I wrote the linear algebra qual exams for term 1 and term 2 of Winter 2021-22.
Merit committee, 2023.
Grad admissions committee, 2023
Hiring committee for Michael Smith Labs 2024

(b) Other service, including dates

In 2019WT1 and T2, I participated in the cluster hiring initiative with a proposal on Microbiome
Interactions and Synthetic Biology in collaboration with Stephen Hallam and Lindsay Eltis and
others, including Leah Keshet, but our proposal was not selected.

11. SERVICE TO THE COMMUNITY

(a) Memberships on scholarly societies, including o�ces held and dates

(b) Memberships on other societies, including o�ces held and dates

(c) Memberships on scholarly committees, including o�ces held and dates

UPER Committee member, 2019 - 2020.
SBME Awards Committee, 2021 - 2022.

(d) Memberships on other committees, including o�ces held and dates

(e) Editorships (list journal and dates)

(f) Reviewer (journal, agency, etc. including dates)

Journals:

– Annals of Statistics, 2019,

– Annals of Applied Statistics, 2019,2020.

– PLOS Computational Biology, 2019, 2020.

– Annals of Statistics, 2019.

– Cell Reports, 2019.

– Information and Inference, 2018, 2020.

– Applied and Computational Harmonic Analysis, 2013, 2016.

– FOCM 2020.

– Nature Biotech 2021.

– Bioinformatics, 2022.

– Annals of Applied Probability, 2023.

– Cell Systems, 2024.

Agencies, institutes:

– Agency/inst. name, dates (# of reviews)

– NSERC Discovery Grant, 2020 (1 review).

– NFRF Exploration Grant, 2021 (1 review).

(g) External examiner (indicate universities and dates)

(h) Consultant (indicate organization and dates)

(i) Other service to the community

12. AWARDS AND DISTINCTIONS

(a) Awards for Teaching (indicate name of award, awarding organizations, date)

(b) Awards for Scholarship (indicate name of award, awarding organizations, date)

1. Michael Smith Health Research BC Award, 2022 ($ 400,000 CAD)



2. Maud Menten New Principal Investigator Prize in Genetics, CIHR, 2021 ($ 30000 CAD). For rank-
ing first in Canada in the 2021 CIHR Project Grant competition.

3. Career Award at the Scientific Interface from the Burroughs Wellcome Fund, 2018 ($500000 USD)

4. Invited faculty at the UCLA Computational Genomics Winter Institute, 2018.

5. Best contributed talk at Statistical Challenges in Single Cell Analysis in Ascona (organized by ETH
Zurich), 2017.

6. First place in the Single Molecule Localization Microscopy Challenge. Organized by EPFL. 2016.
The third place contestant also used our algorithm.

7. Honorable mention for best student paper award at CAMSAP conference. 2015.

8. NSF Graduate Research Fellowship. 2011 - 2016.

9. VIGRE Berkeley Fellowship.

(c) Awards for Service (indicate name of award, awarding organizations, date)

(d) Other Awards

13. OTHER RELEVANT INFORMATION (Maximum One Page)



THE UNIVERSITY OF BRITISH COLUMBIA
Publications Record

Date: April 18, 2024 Initials: GRS

Surname: Schiebinger First Name: Geo↵rey
Middle Name(s): Robert

ORCID https://orcid.org/0000-0002-8290-7997

1. REFEREED PUBLICATIONS

(a) Journals [14 total with 4 as senior author (last named) and 3 as first author]

1. H. Lavenant, S. Zhang, Y.H. Kim and G. Schiebinger
Towards a Mathematical Theory of Trajectory Inference.
Annals of Applied Probability, 34 (1A), 428-500. 2024.

2. L Greenstreet, A Afanassiev, Y Kijima, M Heitz, S Ishiguro, S King, N Yachie, and G Schiebinger
DNA-GPS: A theoretical framework for optics-free spatial genomics and synthesis of
current methods
Cell Systems. 14 (10), 844-859. 2023.

3. F Panariello, O Gagliano, C Luni, A Grimaldi, S Angiolillo, W Qin, A Manfredi, P Annunziata, S
Slovin, L Vaccaro, S Riccardo, V Bouche, M Dionisi, M Salvi, S Martewicz, M Hu, M Cui, H Stuart,
C Laterza, G Baruzzo, G Schiebinger, B Di Camillo, D Cacchiarelli, and N Elvassore
Cellular population dynamics shape the route to human pluripotency.
Nature Communications, 14 (1), 2829. 05/2023.

4. TM Nolan, N Vukašinović, CW Hsu, J Zhang, I Vanhoutte, R Shahan, et al
Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root
Science 379 (6639). 01/2023.

5. R Shahan, CW Hsu, TM. Nolan, BJ. Cole, I W. Taylor, L Greenstreet, S Zhang, A Afanassiev, A
H Cornelia Vlot, G Schiebinger, P N. Benfey, and U Ohler
A single cell Arabidopsis root atlas reveals developmental trajectories in wild type and
cell identity mutants.
Developmental Cell, 57 (4), 543-560. 2022.

6. G Schiebinger
Reconstructing developmental landscapes and trajectories from single-cell data Current

Opinion in Systems Biology, 27, 100351. 2021.

7. S. Zhang, A. Afanassiev, L. Greenstreet, T. Matsumoto, and G. Schiebinger
Optimal transport analysis reveals trajectories in steady-state systems.
PLOS Computational Biology, 17 (12) 2021.

8. A. Forrow and G. Schiebinger
LineageOT is a Unified framework for lineage tracing and trajectory inference.
Nature Communications, 12 (1). 2021.

9. AJ Massri, L Greenstreet, A Afanassiev, A Berrio, GA Wray, G Schiebinger, and DR McClay
Developmental Single-cell transcriptomics in the Lytechinus variegatus Sea Urchin Em-
bryo.
Development, 148 (19) 2021.



10. G. Schiebinger, J. Shu, M. Tabaka, B. Cleary, et. al.,
Optimal-transport analysis of single-cell gene expression across time sheds light on re-
programming.
Cell, 176 (4), 928-943. 2019.
700 citations.

11. N. Boyd, G. Schiebinger and B. Recht.
The Alternating Descent Conditional Gradient Method for Sparse Inverse Problems.
SIAM Journal on Optimization, 27 (2), 616-639. 2017.

12. G. Schiebinger, E. Robeva and B. Recht.
Superresolution without Separation. Information and Inference, 7 (1), 1-30. 2017.

13. G. Schiebinger, M. J. Wainwright and B. Yu.
The Geometry of Kernelized Spectral Clustering.
Annals of Statistics, 43 (2) 819-846, 2016.

14. A. Guntuboyina, S. Saha and G. Schiebinger. (alphabetical order)
Sharp Inequalities for f-divergences.
IEEE Transactions on Information Theory, 60 (1), 104-121. 2014.

15. L. A. Warren, D. J. Rossi, G. Schiebinger, I. L. Weissman, S. K. Kim and S. R. Quake.
Transcriptional instability is not a universal attribute of aging.
Aging Cell, 6 (6), 775-782. 2007.

(b) Conference Proceedings

1. L Chizat, S Zhang, M Heitz, G Schiebinger
Trajectory inference via mean-field langevin in path space
Advances in Neural Information Processing Systems. 35, 16731-16742. 2022.

2. A. Forrow, J.C. Hutter, M. Nitzan, P. Rigollet, G. Schiebinger, and J. Weed.
Statistical Optimal Transport via Factored Couplings.
AI Stats, 2019.

3. M.E. Shi↵man, W. Stephenson, G. Schiebinger, T. Campbell, J. Huggins, A. Regev, and T. Brod-
erick.
Probabilistic reconstruction of cellular di↵erentiation trees from single-cell RNA-seq
data.
NeurIPS Bayesian Nonparametrics Workshop, 2017.

4. A short version of Superresolution without Separation appeared in CAMSAP 2015. (full ver-
sion above).

5. A short version of The Alternating Descent Conditional Gradient Method for Sparse
Inverse Problems appeared in CAMSAP 2015. (full version above).

2. NON-REFEREED PUBLICATIONS

3. BOOKS

(a) Authored

(b) Edited

(c) Chapter: Methodologies for Following EMT In Vivo at Single Cell Resolution. AJ. Massri, G.
Schiebinger, A Berrio, L Wang, GA. Wray, DR. McClay

4. PATENTS

(a) U.S. Provisional Patent Application No.: 63/322,386, filed March 22, 2022.



Title: A DNA-based global positioning system

Inventors: Geo↵rey Schiebinger, Anton Afanassiev, Yusuke Kijima, Laura Greenstreet, Nozomu Yachie,
Matthieu Heitz

(b) U.S. Provisional Patent Application No. 62/561,047, filed September 20, 2017.

Title: Methods and Systems for Reconstruction of Developmental Landscapes by Optimal Transport
Analysis

Inventors: Geo↵rey Schiebinger, Jian Shu, Marcin Tabaka, Brian Cleary, Aviv Regev, Eric S. Lander,
Philippe Rigollet

5. SPECIAL COPYRIGHTS

6. ARTISTIC WORKS, PERFORMANCES, DESIGNS

7. OTHER WORKS

8. WORK SUBMITTED (including publisher and date of submission)

(a) M Heitz, Y Ma, S Kubal, G Schiebinger
Spatial transcriptomics bring new challenges and opportunities for trajectory inference
Invited to submit to Annual Review of Cell and Developmental Biology. Submitted 11/2023.

(b) Charlotte Bunne, Geo↵rey Schiebinger, Andreas Krause, Aviv Regev, Marco Cuturi
Optimal transport for single-cell and spatial omics.
Invited to submit to Nature Methods. Submitted 10/2023.

(c) N Deb, YH Kim, S Pal, G Schiebinger
Wasserstein mirror gradient flow as the limit of the Sinkhorn algorithm.
Submitted to Annals of Probability 7/2023.
arXiv preprint arXiv:2307.16421

(d) B Bonham-Carter, G Schiebinger
Cellular proliferation biases clonal lineage tracing and trajectory inference.
Submitted to Bioinformatics. 10/2023. Major Revision 01/2024.
bioRxiv, 2023.07. 20.549801

(e) G. Mordant, T. Matsumoto, S. Zhang, and G. Schiebinger
Manifold learning with sparse regularised optimal transport.
Submitted to JMLR, 10/2023.
arXiv preprint arXiv:2307.09816

(f) E Ventre, A Forrow, N Gadhiwala, P Chakraborty, O Angel, G Schiebinger
Trajectory inference for a branching SDE model of cell di↵erentiation.
Submitted to Annals of Applied Probability, 09/2023.
arXiv preprint arXiv:2307.07687

(g) YS Michaels, MC Major, B Bonham-Carter, J Zhang, T Heydari, JM Edgar, et al
Time-and lineage-resolved transcriptional profiling uncovers gene expression programs and
clonal relationships that underlie human T lineage specification
Submitted to Science Immunology, 10/2023.
bioRxiv, 2023.10. 06.561277



(h) YC Cheng, Y Zhang, S Tripathi, H BV, MK Jolly, G Schiebinger, H Levine, ...
Reconstruction of single cell lineage trajectories and identification of diversity in fates dur-
ing the epithelial-to-mesenchymal transition
Submitted to Developmental Cell, 11/2023.
bioRxiv, 2023.09. 19.558325

(i) H Li, J Ezike, A Afanassiev, L Greenstreet, S Zhang, J Whangbo, V L. Butty, E Moiso, G G. Connelly,
V Morris, D Wang, G Q. Daley, S Garg, S T. Chou, A Regev, E Lummertz da Rocha, G Schiebinger,
and R. G. Rowe
Hematopoiesis at single cell resolution spanning human development and maturation.
Submitted to Cell, 10/2023.

(j) R. Wilder Scott; Martin Arostegui; Lesley Ann Hill; Amanda YuanYuan Yang; Stephen Zhang; Alyssa
Zhao; Geo↵ Schiebinger; Tully Michael Underhill
A single cell epigenomic and transcriptomic atlas of murine mesenchymal stromal cells
Submitted to Cell. 03/2023.

(k) Vijay Kuchroo, Yu Hou, Martin LaFleur, Linglin Huang, Conner Lambden, Pratiksha Thakore, Kathryn
Geiger-Schuller, Ruihan Tang, Jingwen Shi, Rocky Barilla, Ayshwarya Subramanian, Antonia Wallrapp,
Hee Sun Choi, Yoon-Chul Kye, Orr Ashenbrg, Geo↵rey Schiebinger, John Doench, Aviv Regev, Arlene
Sharpe
CRISPR screens reveal neuropeptide signaling orchestrates T helper cell di↵erentiation.
Submitted to Cell. 08/2022.

9. WORK IN PROGRESS (including degree of completion)

• The asteroid belt is an entropic phenomenon, 75%, submitting to Nature as single-author paper.

• Illuminating the genetic forces driving development in C. elegans and mouse by profiling
with scRNA-seq at thousands of time-points, with Kenji Sugioka (UBC Zoology) and Nozomu
Yachie (UBC Biomedical Engineering), 30%.



Research Statement  Geoffrey Schiebinger 

 1 

Towards a Mathematical Theory of Development  
Biology has entered a new era of precision measurement and massive datasets. Techniques like 

single-cell RNA sequencing (scRNA-seq) and single-cell ATAC-seq have emerged as powerful tools to 
profile cell states at unprecedented molecular resolution. One of the most exciting prospects associated 
with this new trove of data is the possibility of studying temporal processes, such as differentiation and 
development. If we could understand the genetic forces that control embryonic development, then we 
would have a better idea of how cell types are stabilized throughout adult life and how they destabilize 
with age or in diseases like cancer.  

This would be within reach if we could analyze the dynamic changes in gene expression, as 
populations develop and subpopulations differentiate. However, this is not directly possible with current 
measurement technologies because they are destructive (e.g. cells must be lysed to measure expression 
profiles). Therefore, we cannot directly observe the waves of transcriptional patterns that dictate 
changes in cell type. In response, there has been a flurry of recent work on developing methods to infer 
trajectories from static snapshots of gene expression profiles (e.g. [1], [2], [3], [4]). However, there is 
relatively little theoretical understanding of this statistical inverse problem; if we are to rely on 
trajectory inference to understand disease, develop new therapies, and engineer tissues, we need to 
know when to trust the results.  

My research group is developing a rigorous statistical framework for understanding the 
developmental trajectories of cells in a dynamically changing, heterogeneous population based on static 
snapshots along a time-course. The framework is based on a simple hypothesis: over short time-scales 
cells can only change their expression profile by small amounts. We formulate this in precise 
mathematical terms using a classical tool called optimal transport (OT), and we propose that this 
optimal transport hypothesis is one of the first fundamental mathematical principles of 
developmental biology. Compared to related fields like evolution and population genetics, 
developmental biology has been relatively non-mathematical. This OT-hypothesis leads to a rigorous 
mathematical theory of development, broadly interpreted to include any population of cells changing 
over time (e.g. tumorigenesis, disease progression, aging, wound healing, cellular reprogramming etc).  

 
Research Accomplishments 

I formulated the OT hypothesis during my postdoctoral studies with 
Lander, Regev and Rigollet at MIT. We were studying stem cell 
reprogramming with scRNA-seq, and wished to recover developmental 
trajectories from snapshots of gene expression profiles collected along a 
time-course of cellular reprogramming [1]. The gene expression vector of a 
cell is a 20,000-dimensional vector which encodes the number of molecules 
of RNA in the cell for each gene. Over time, as cells turn genes on or off to 
accomplish various tasks, cells trace out trajectories through gene 
expression space. With scRNA-seq, we can take a large population of cells 
and measure their positions in gene expression space. However, this 
process kills the cells, so we attempt to infer trajectories from static snapshots collected along a time-
course. In Figure 1, we know that the entire green population gives rise to the entire red population, 
and we would like to infer that the left subpopulation of green cells at time t1 gives rise to the left 
subpopulations of red cells at time t2. 

A developing population of cells can be modeled with a continuous time Markov stochastic process 
over a space of cell states (e.g. gene expression space). We are given samples from the marginals of the 
stochastic process at various time-points. Crucially, samples from different time-points are independent, 
so, it is difficult to learn the transition kernel of the Markov process without further assumptions. The 

 

Figure 1: Sampling 
Waddington’s landscape. Cells 
collected at three distinct time-
points are shown in blue, 
green, and red.  
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OT hypothesis states that the transition kernel for this Markov process agrees with optimal transport 
over short time-scales. We have recently shown that this holds for stochastic differential equations with 
conservative drift (i.e. the drift is the gradient of a potential function as in Fig 1), and that the inverse 
problem of recovering trajectories can be solved efficiently through convex optimization [5]. 

We have recently tested the OT hypothesis in diverse systems including induced pluripotent stem 
cell (iPSC) reprogramming in mice [1], sea urchin embryonic development [6], Arabidopsis root growth 
[7], [8], [9], human hematopoiesis [10], and reprogramming human cells. Other groups have recently 
applied OT to study high-plasticity states in lung cancer evolution [11], lineage plasticity in distal lung 
progenitors [12], and trajectories of aging [13]. See Aim 2b below for a 
summary of collaborations in progress and future plans.  

In each of these collaborations, we found that OT is predictive and 
robust. For example, when we analyzed L. variegatus sea urchin 
development with Gregory Wray and David McClay at Duke [6], we 
were able to rediscover the vast majority of classically known regulators 
(e.g. 18 of 21 for endoderm and 13 out of 14 for skeletogenic cells). 
Similarly, in Arabidopsis, which we analyzed with Philip Benfey and Uwe 
Ohler, we found that OT was able to identify both known developmental 
regulators and also novel candidates which we verified experimentally 
[8], [9].  

 
Developmental curves and the optimal design of experiments. As a 

population of cells changes over time, it traces out a curve in the space 
of probability distributions (red curve in Fig 2a). The OT hypothesis can 
be interpreted geometrically: developmental curves are ‘locally 
geodesic’ with respect to the optimal transport metric. 

  When we sample cells at a time-point with scRNA-seq, the 
empirical distribution of cells forms a “noisy measurement” of a point 
along the curve (black dots in Fig 2a). The number of cells sampled 
determines the “noise-level” of the time-point measurement: the more 
cells we sequence at a time-point, the more precisely we can localize 
the curve at that one position. We can then connect consecutive time 
points with optimal transport (Fig 2a, dashed lines), as proposed in [1]. 
Through geodesic interpolation (Fig 2b), we can quantify performance 
by comparing the midpoint of a line-segment (purple point) to held out 
data (green point). 

A key outcome of this viewpoint is a paradigm shift in the design of 
experiments: while the number of cells per study has increased 
dramatically with droplet-based scRNA-seq [14], [15], the number of 
time points in time-course studies of development has not increased by 
nearly the same amount. For example, a recent high-profile study on 
mouse embryonic development profiled an impressive one million cells, 
but over only 5 developmental time-points [16]. While high-resolution 
sampling of many time-points is practically very difficult, the theory 
recommends collecting more time-points with fewer cells per time-
point. To illustrate this, we analyzed the data from iPSC reprogramming 
[1] and sea urchin embryonic development [6]. Similar to analyzing 
saturation of reads in sequencing, we examined the saturation levels for 

Figure 2: (a) Development traces 
out a curve in the space of 
probability distributions. Black 
dots indicate sampled 
populations at various time-
points, which we connect using 
optimal transport (dashed lines). 
(b) Geodesic interpolation 
compares held out data (green) 
to mid-point of segment (purple) 
to quantify performance. (c) 
Saturation analysis for iPSC 
reprogramming and urchin 
embryonic development. 
Subsampling time-points (blue) 
causes interpolation to degrade 
more quickly compared to 
subsampling cells (orange).   

a

b

c
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both temporal resolution and numbers of cells (Fig 2c). We found that geodesic interpolation results 
degraded more rapidly when time-points were removed, compared to down-sampling cells [17]. 
Therefore, it seems better to collect more time-points, with fewer cells per time-point. With this 
motivation, we are currently collaborating with experimentalists to develop a new technology to collect 
thousands of time-points with scRNA-seq. My 2021 CIHR (Canadian Institutes of Health Research) 
Project Grant on this topic was ranked first in Canada, and for this I was awarded the 2021 Maude 
Menten Prize in Genetics. See Aim 2 for more on this new measurement technology. 
 

Research Plans 
AIM 1: Build mathematical theory of development based on the OT hypothesis 

We have recently analyzed trajectory inference as a statistical inverse problem, and we have proven 
that a consistent estimator can be formulated through convex optimization [5]. We consider the 
problem of recovering the law of a stochastic differential equation from samples of the marginals at 
various time-points. By law, we mean the probability distribution on paths induced by the SDE. While 
this is not possible in general, we prove that for SDEs with conservative drift (i.e. the drift is the gradient 
of a potential function), the curve of marginals uniquely determines the trajectories.  

The most basic estimator would “connect-the-dots” with 
optimal transport (Fig 3, red curve). We construct an 
estimator which generalizes this concept by trading off data 
fitting with regularization. Roughly speaking, the 
regularization term measures the total (squared) length of 
the curve, and the data fitting is measured by likelihood (Fig 
3, blue curve). More precisely, the optimization variable is a 
stochastic process and the regularization term is the relative 
entropy to a reference process, which we take to be the 
Wiener process (with diffusion equal to the diffusion of the 
SDE). This relative entropy minimization is equivalent to 
entropy-regularized optimal transport between the 
marginals of the reconstructed process (i.e. we smoothly “connect-the-dots” with Schrödinger bridges 
to form the blue curve in Fig 3).  

The resulting optimization problem is convex, yet infinite dimensional. In our first paper on the topic, 
we proved that the optimal solution yields a consistent estimator: it recovers the true law on paths in 
the limit of infinitely many time-points [5]. Interestingly, we only require one sample at each time-point 
for consistency. This has been published in Annals of Applied Probability [18]. In a second paper on the 
topic, we design an algorithm to solve the optimization problem via mean-field Langevin dynamics [19].  

There are several interesting open questions in this area. First, we are working to establish finite-
sample rates of convergence. This holds the key to answering biological questions like: What time-
resolution do we need to reconstruct a developmental curve? What is the optimal set of time-points to 
sample? How many cells should we sample at each time-point? We suspect the rates will depend on the 
‘curvature’ of the developmental progression and one should sample more frequently over periods of 
rapid change. While estimating Wasserstein distances can suffer from the curse of dimensionality, 
entropic regularization is known to yield parametric rates [20]. We are also eager to explore notions of 
sparsity in this context (e.g. a sparse law on paths for the SDE). Along similar lines, we could replace the 
Wiener process in the entropy minimization with something more biological (e.g. a process 
parameterized by a gene regulatory network which drives trajectories through gene expression space).  

Second, we envision interesting extensions of this framework to regressions of families of 
developmental curves. For example, we can model the evolution of development with a branching 

Figure 3: A developmental process (green 
curve) is sampled at various time-points 
(red dots). The blue curve shows a 
regularized estimate.  
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process in the space of developmental curves (branching is a speciation event, each leaf of the tree is 
the developmental curve of a species living today). After inferring developmental trajectories for various 
species, we could model the phylogeny and attempt to infer ancestral developmental curves, similar to 
how ancestral DNA sequences are inferred. Beyond discrete phylogenies, one can also consider 
continuously parameterized families of curves: for example, consider wound healing or disease 
progression parameterized by age. This is a one-dimensional family of curves. It would be interesting to 
share information across ages and simultaneously infer all curves in a single regression framework. 
Finally, one could also imagine other applications of trajectory inference beyond cellular development. 
For example, in the design of clinical trials, when longitudinal data is not always available for every 
patient, one could leverage OT to infer trajectories and therefore obtain pseudo-longitudinal data from 
static snapshots.  

AIM 1b: Develop unified framework for lineage 
tracing and trajectory inference. New measurement 
technologies (including from collaborator Yachie 
[21], [22]) make it possible to simultaneously trace 
cell lineage and measure cell state. However, the 
computational approaches for trajectory inference 
and lineage tracing have been approached from 
separate directions. We have recently made progress 
towards a unified framework for lineage tracing and 
trajectory inference [23], [24]. In the first work [24] 
we have shown that OT trajectory inference can be 
improved with lineage information (Fig 4). The main 
idea is to leverage a lineage tree to adjust cell states 
(Fig 4c) before connecting them to their putative 
ancestors with OT (Fig 4d). In recent work, with Omer 
Angel, we have shown that lineage tracing can also 
be used to incorporate automatic estimates of 
cellular proliferation [23]. Ultimately, we aim to 
extend these approaches to share information over time (the curves in Fig 3 would then be curves in the 
space of trees). The first step is to replace the reference process in the Schrodinger problem with 
branching Brownian motion, which has recently been accomplished by my former postdoc, Hugo 
Lavenant [25].  
 
AIM 2: Profile development with scRNA-seq at thousands of time-points and test the OT hypothesis.  
Our theory motivates the collection of high-density time-courses (see Fig 3). We propose a simple 
method for embryo barcoding to easily profile thousands of embryos in a single experiment. The idea is 
to cross two parents with slightly different genotypes in an organism that can produce large numbers of 
offspring (like urchin, fly, C. elegans, etc). We will dissociate all embryos in parallel, sample cells with 
scRNA-seq, and detect genotypes from the scRNA-seq data. This will allow us to cluster cells according 
to their embryo of origin. We will initially use C. elegans embryos as a model system. C. elegans has an 
invariant cell lineage and its full lineage has been already described [26]. This aim will be supported by 
collaborators Nozomu Yachie and Kenji Sugioka, and funded by our CIHR Project Grant. We are also 
collaborating with Dave McClay and Greg Wray from Duke to test this in urchin and with Steve Plotkin 
from UBC to test this in ctenophora, the most evolutionary ancient multicellular animal.  

AIM 2b: Test the OT hypothesis in diverse biological settings: We are collaborating with numerous 
groups of experimentalists to analyze diverse developmental processes. 1) With the first group (Wray 

 
 
Figure 4: (a) Two developmental processes are stopped 
at different time-points (red and blue). Green lines 
show incorrect trajectories, inferred without lineage 
information. (b) Lineage information, collected 
simultaneously with cell state, is shown on the vertical 
axis. (c-d) The two steps of our preliminary method. 
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and McClay at Duke), we will analyze a pair of sea urchin developmental time-courses and compare 
developmental trajectories across species. We will collect thousands of time-points leveraging Aims 1 
and 2. 2) With Peter Zandstra’s lab at UBC, we will elucidate the events along a time-course of T-cell 
induction. 3) With Ryan Flannigan’s lab at Vancouver General Hospital, we will compare the 
developmental progression of spermatogenesis in healthy vs diseased (collapsed) patients. 4) With Sam 
Aparicio’s lab (BC Cancer), we will analyze a time-course of tumor progression in mice. 5) With Fadi 
Lakkis and Khodor Abou-Daya (U Pitt), we will leverage a combined time-course of single cell RNA-seq 
and ATAC-seq to shed light on monocyte differentiation. 6) With Philip Benfey’s lab at Duke, we are 
analyzing several mutant knockout atlases using StationaryOT, a variant of our OT framework designed 
for systems in equilibrium. 7) With Nozomu Yachie’s Lab at UBC, we aim to collect and analyze a lineage-
tracing time-course in mice (in addition to the C. elegans experiments described above). 8) Pamela 
Hoodless’s lab at BC Cancer is planning to perform time-course single-cell RNA sequencing 
measurements of hepatic organoid development. I will support the prediction of cell differentiation 
trajectories using WaddingtonOT. 9) In collaboration with Ken Harder, we will analyze cytokine networks 
controlling myeloid cell mediated immunosuppression in colon cancer. Schiebinger is co-PI on Harder’s 
CIHR Project Grant, awarded June 2021. In the first six collaborations, data has already been provided.  
 
AIM 3: Develop theory and methods for spatiotemporal trajectory inference 
With collaborator Nozomu Yachie (UBC SBME), we are 
developing a new measurement technology for large-
scale spatial transcriptomics (ST), which can measure 
gene expression across whole organs. (Ordinary scRNA-
seq loses the spatial context of cells in tissues). Existing 
ST technologies have struggled to capture large field-of-
view and have mostly been restricted to capturing two-
dimensional images from tissue slices. Our technology, 
called DNA-GPS [27] leverages concepts from manifold 
learning to dramatically reduce the difficulty of the 
measurement process. Our key idea is to randomly 
distribute DNA barcodes throughout the tissue sample. These stick to cells and are captured and 
sequenced together with the rest of the genes. Each cell is then equipped with two high-dimensional 
vectors: the ordinary gene expression vector describing the cell state, and the artificial DNA barcode 
vector describing the number of copies of each DNA barcode species captured by the cell. Cells close in 
physical space will capture similar counts of DNA barcodes; therefore, this process embeds the physical 
tissue as a low-dimensional manifold in a high-dimensional DNA-
barcode space. We have demonstrated through simulations that a 
manifold learning algorithm called UMAP can accurately recover 
cellular positions (Fig 5), and we have used the simulations to 
optimize the experimental design (e.g., how many DNA barcodes 
and what depth of sequencing do we need and how should DNA 
barcodes be distributed over space?). 

AIM 3b: ST denoising and trajectory inference. With colleagues 
Yaniv Plan and Michael Friedlander, we are developing a 
compressed-sensing approach for denoising ST images. Large-scale 
ST will require unprecedented sequencing depth. We tested whether we could down-sample the 
sequencing reads from published ST data [28] and obtain similar results. We found that low-rank 
regularization on the gene expression matrix, together with total-variation regularization of the ST 
images allows us to down-sample sequencing reads to 10% of the original depth and recover similar 

 
Figure 5: (A) Original slide-seq spatial transcriptomic 
image of mouse cortex. Colors represent cell types. (B) 
Tissue slice embedded in high-dimensional space of 
DNA barcodes. (C) DNA-GPS reconstruction. 

 

 
Figure 6: Original image (left) and 
reconstruction (right) colored by cell type.  

 

Original Reconstruction
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images (Fig 6). Finally, we envision that we can perform trajectory inference on time-courses of ST 
images by incorporating spatial position into the cost function of optimal transport. For example, by 
generalizing our regression approach illustrated in Fig 3, we envision that we could infer the 
developmental curve of 3D ST from a large number of 2D images from randomly oriented slices.  
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