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Gradient Flow in Wasserstein Space

Last time, we talked about the Wasserstein geodesic on a line and the curve of probability measures in the
Wasserstein space associated with the vector field in the state space. The curve of the probability measures
models single cell movement. However, how could we model the movement of cells when there are cell-cell
interactions such as the cell touch in the real 3D space? The gradient flow in Wasserstein space, which we
are going to cover in today’s lecture, can be used to model the movement of cells when there are cell-cell
interactions.

16.1 Gradient Flow in Euclidean Space

The gradient descent is a numerical algorithm for finding the minimum of a differentiable function f :
Ω ⊂ Rd → R. It produces a sequence of points xk that converges to a local minimum of f . At kth step, let

xk ← xk−1 − ηk ∇f(xk−1)︸ ︷︷ ︸
direction of

steepest descent

.

where ηk is the step size. The kth step can be rewritten as xk−xk−1

ηk
= −∇f(xk−1). For sufficiently small

step size ηk, we then have
x′(t) = −∇f(x(t)), x(0) = x0 (16.1)

Definition 16.1 (Gradient Flow) A curve x(t) : [0, T ]→ Rd is the gradient flow according to f if it is a
solution to the differential equation (??).

By definition, we can see that gradient flow is a curve that depicts the direction of steepest descent of f .
For example, in Figure ??, the solid line is the gradient descent step with large step size. As the step size
becomes extremely small, the dahsed line is the gradient flow according to f .

In the above definition for gradient flow, the function f is defined over the Euclidean space, if we have some
functional F defined over a probability measure space, how to generalize the definition of gradient flow?
The current definition via the differential equation is not applicable as ∇F is not well-defined. We view the
gradient descent from a different point of view, which can be generalized for non-differentiable f , hopefully,
it can help us to generalize the definition of gradient flow according to F .

The gradient descent algorithm is only applicable for f that is differentiable. For non-differentiable functions,
a generalization of the gradient descent is called the proximal method.

Definition 16.2 (Proximal Method) The procedure of proximal method is as follows. At step k,

xk = arg min
x

f(x)

subject to ‖x− xk−1‖ ≤ ε.
(16.2)
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We show that for differentiable f , the procedure of proximal method reduces to the procedure of gradient
descent. The Lagrangian of (??) is

L(x, λ) = f(x) + λ‖x− xk−1‖2

Figure 16.1: An illustration of gradient descent
and gradient flow according to some function.

At optimality, we have

∇f(x) + 2λ(x− xk−1) = 0.

For sufficiently small ε, we have ∇f(x) ≈ ∇f(xk−1).
Therefore, at optimality we approximately ∇f(xk−1) +
2λ(x− xk−1) = 0 which implies

xk = xk−1 −
1

2λ
∇f(xk−1).

Therefore, for differentiable f , the update based on the
proximal method is a gradient descent step with a partic-
ular choice of step size. Hence, the take away message
is that proximal methods generalize gradient descent to
non-differential optimization problems. As we shall in see
in Example ??, the proximal method allows us to gener-
alize the gradient flow over functional without a need to
define the gradient.

In 1998, [JKO1998] defined gradient flow in W2(X ). In
their work, the gradient flow for functional F : W2(X )→ R is defined through the Fokker-Planck equation.
The Fokker-Plack equation plays a central rule in statistical physics as a solution to the Fokker–Planck
equation represents the probability density for the position of a particle whose motion is described by a
corresponding Ito stochastic differential equation. Below is an example of the gradient flow according to
negative entropy in W2(X ) and a description of the Fokker-Planck equation is given in the next section.

Example 16.3 (Gradient Flow according to Negative Entropy) Let ρ be a probability density func-
tion, consider the classical diffusion equation

∂ρ

∂t
= ∆ρ

which is a Fokker-Planck equation associated with a standard Brownian motion. [JKO1998] shows that

ρ(k) = arg min
ρ

1

2
W 2

2 (ρ(k−1), ρ) + h

∫
ρ(x) log ρ(x)dx

is a discretization of the diffucsion equation for some step size h. As a comparison to the proximal method
we described above, the discretization is very similar to the procedure of proximal method except that the
distance is changed from Euclidean distance to Wasserstein distance. Therefore, this allows us to regard the
diffusion equation as a steepest descent of the functional

∫
ρ(x) log ρ(x)dx with respect to the Wasserstein

metric.

16.2 Fokker-Planck Equation

[JKO1998] considers the Fokker-Planck equation

∂ρ

∂t
= ∇ · (ρ∇ψ) + β−1∆ρ, ρ(x, 0) = ρ0(x) (16.3)
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where β−1 is a “temperature parameter”, ψ is a poential energy function. It is well known that the Fokker-
Planck equation is inherently related to the stochastic differential equation

dX(t) = −∇ψ(X(t))dt+
√

2β−1dBt, X(0) = X0 (16.4)

where X0 is a random vector with probability density ρ0. This models a particle doing Brownian motion
with drift. The solution {Xt}∞t=0 starting from X0 is a continuous time Markov process.

Example 16.4 If ψ ≡ 0, then Xt = Bt is a Brownian motion where Law(Xt2 |Xt1 = x) = N(x, σ(t2 − t1))
for some function σ.

Example 16.5 When β−1 = 0, Xt is deterministic.

The ρ(x, t) in Fokker-Planck equation is the density describing where the particle is at time t. One fact is
that if ψ is “smooth enough” and “grows quickly”, then there is a unique stationary solution ρs(x) of the
Fokker-Planck equation

ρs(x) = Z−1 exp(−βψ(x))

where Z =
∫

exp(−βψ(x))dx. ψ must grow rapidly enough to ensure that Z is finite. Then ρs(x)dx is called
the Gibbs measure and it ρs minimizes the free energy functional

F (ρ) = E(ρ) + β−1S(ρ)

where

E(ρ) =

∫
ψ(x)ρ(x)dx

S(ρ) =

∫
ρ(x) log ρ(x)dx

Then the solution ρ(x, t) to the Fokker-Planck equation is the gradient flow of the free energy functional F .
The free energy can only decrease in time for any solution ρ(x, t) to Fokker-Planck equation.

16.3 Gradient Flow in Wasserstein Space

What is a gradient flow on W2(X )? Define the discrete iterative scheme:

(?)

{
Start with ρ0

ρk+1 = arg minρ{ 12W
2
2 (ρ, ρk) + ηF (ρ)}

Theorem 16.6 Let ρ0 satisfy F (ρ0) <∞, ψ grows quickly, and for η > 0. Let {ρkη}∞k=0 be the iterates from
(?). Define a curve

ρη(t) = ρ(k)η for t ∈ [kη, (k + 1)η)

Then as η ↓ 0, ρη(t)→ ρ(t) weakly where ρ(t) is the unique solution to Fokker-Planck equation (??).

How does the gradient flow in the Wasserstein space related with the course? For example, ψ can be the
potential of the Waddington’s landscape. We could model the process with cell-cell interactions via

dXt = −∇ψ(Xt,Pt)︸ ︷︷ ︸
Interaction
potential

+εdBt

The distribution Pt follows a gradient flow for a more general “free energy” F (P). For example, for the
pairwise interactions, F (P) =

∫
ψ(x, y)dP(x)dP(y).
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