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Lecturer: Geoffrey Schiebinger Scribe: Min Jun Jo

6.1 Discovering heterogeneity from a sample

When we take samples from a given space of cells, we often encounter a mixture of different types of cells.
In those cases, appropriate clustering would be a crucial starting point. The question is, how can we do
the appropriate clustering for given data?

6.1.1 Introduction

Let X1, X2, · · · , Xn be n i.i.d. samples. We will talk about modeling this as a mixture of different cell types;
specifically, we will deal with mixture modeling, clustering, and differential expression.

A mixture model (or distribution) is a special kind of distribution that we will use to think about different
cell types. Mathematically, a mixture distribution P can be defined by P = w1P1 + · · · + wkPk where wi’s
stand for the corresponding “mixture weights” satisfying w1 + · · ·+wk = 1 and Pi’s are distributions called
“mixture components.”

Suppose that we have 2 types of cells. If we label the cells with respect to two genes, say g1 and g2,
then we obtain, for examples, the following graphs: the first one <Ex.1> describes a case that we need a
more sophisticated method of clustering, and the second one <Ex.2> is the simplest case on which a crude
clustering still works.
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To sample from a mixture model,

1) Pick cell type T as the following:

T =


1 with probability w1

2 with probability w2

...

k with probability wk

2) Sample expression profile X ∼ PT . Then we can indeed check that X ∼ P .

6.1.2 Clustering - unsupervised learning

Goal of clustering: Given X1, · · · , Xn ∼ P , group X1, · · · , Xn into groups by cell types.

Given groupings, we can try to learn what makes cell types different.

6.1.3 Differential expression - supervised learning

The simplest approach can be described as the following four steps:

i. Find the mean of whole population m

ii. Find the means of Xi’s in each group, say (mi, Ti)’s

iii. Fold change mi

m
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iv. Sort to find top genes over-expressed in each group

2) Train classifier

Given n samples X1, X2, · · · , Xn, the most popular simple approach is called k-means that consists of the
four steps below.

i. Initialize mean vectors m1,m2, · · · ,mk ∈ R20,000

ii. Assign each point Xi to the closest mean vector

iii. Update mean vector to be the mean of Xi assigned to it

iv. Repeat ii. and iii. until convergence

This train classifier is applicable to <Ex. 2>. But it’s flawed in being applied to <Ex. 1>.

6.1.4 Spectral clustering

6.1.4.1 Introduction

Spectral clustering is a nonlinear dimensionality reduction that would transform data into k-means through
which we can see the equivalent but well-clustered data. This method is twofold:

1) Nonlinear embedding into lower dimensional space Rk where k is the number of cell types we are looking
for. This nonlinear embedding is called a kind of ”diffusion components.”

2) k-means in Rk

6.1.4.2 Settings

We fix an arbitrary kernel function κ : χ× χ→ R+. An example of our target space χ is R20,000, a space of
genes. Here κ(x, y) stands for the ”similarity” between two points x and y: roughly speaking, if κ(x, y) ∼ 0,
we can say that x and y are different, and if κ(x, y) ∼ 1, then we say that x and y are similar.

Example 1. Linear kernel κ(x, y) = xT y

Example 2. Polynomial kernel κ(x, y) = (1 + xT y)2

Example 3. Gaussian kernel κ(x, y) = e−
||x−y||2

2σ2 with bandwidth σ

Using the kernel function κ we define the kernel matrix K by (K)ij = κ(xi, xj) for each (i, j) ∈ [n] × [n].
By the definition of K, K is a symmetric matrix which is poisitive semi-definite, i.e., K ≥ 0.

6.1.4.3 Diffusion component embedding (Laplacian embedding)

This embedding consists these five steps:

I. Compute the kernel matrix

Given a kernel K, we do kernel PCA: compute the eigenvectors of K.
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II. “Normalize” the kernel matrix

Why do we normalize it? PCA is going to find the subspace that maximizes the variance of the
data. Therefore, if 90% of the data (just a rough percentage signaling its dominance) is in one cluster,
then our top k eigenvectors would all be related to the dominant cluster. Thus we need to find a
different matrix whose top eigenvectors would correspond to different clusters, i.e., we should leverage
a more appropriate matrix for clustering.

The normalized Laplacian L is defined by

L = D−1/2KD−1/2,

where the diagonal matrix D can be expressed component-wisely by dii =
∑n

j=1 κ(xi, xj) for each i.

III. Compute eigenvectors of L: consider Lv = λv.

Take the top k eigenvectors, say v1, v2, · · · , vk.

IV. Embed the data

Note that the top eigenvectors were derived from the evaluation of the kernel function κ over the
samples X1, X2, · · · , Xn. So, for each j ∈ [n] (L is a n×n matrix), indeed we can see each component
of the eigenvector vj as a function:

vj =

vj(X1)
...

vj(Xn)


Here is the k-dimensional embedding: Xi 7−→

(
v1(Xi), v2(Xi), , vk(Xi)

)
.

V. k-means in Rk

For brevity, consider the case k = 2 with one dimensional space χ = R for g1.

Consider the mixture model P = w1P1+w2P2. Suppose that we have the samples described in <Ex.3>.
Then we can project the data onto two-dimensional space spanned by P1 and P2, as presented in
<Ex.4>.

The final result of the k-dimensional embedding would be seen in <Ex.5>.
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These two maps <Ex.4> and <Ex.5> are basically equal up to rotation, which is a very nice property of
spectral clustering. This equivalence between two maps remains valid whenever the clusters don’t overlap
too much.

The above statement also can be formulated as the following.

Theorem 6.1 Suppose that we have low overlap between P1 and P2, i.e., E
(
κ(X1, X2)

)
� 1. Assume

further that each mixture component Pi is not easily divided into two components that don’t overlap. Then,
these two embeddings are identical.
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