Math 612: Single Cell Analysis

Lecture 8: October 1

Lecturer: Geoffrey Schiebinger

Scribe: Sibyl Drissler

2019W Term 1

8.1 Markov Processes

8.1.1 Finite State Markov Processes

Definition 8.1 Transition Matrix: What is X_{t+1} given X_t ?

$$X_t = \{\text{Eat, Sleep, Active}\}, t = 1, 2, 3$$
$$M = \begin{bmatrix} 0.5 & 0 & 0.5 \\ 0.5 & 0.5 & 0 \\ 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} \text{E} \\ \text{A} \\ \text{S} \end{bmatrix}$$

Note: The rows sum to 1.

If we know $x_o = E$, $X_1 \sim M\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$. If we think that the state at time t is $P_t = \begin{pmatrix} 0.1\\ 0.8\\ 0.1 \end{pmatrix}$, then we can push P_t through M to get the distribution over states at time t + 1.

$$P_{t+1} = MP_t$$

so for $x_o = E, X_2 \sim M X_1 = M^2 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

The transition from time 1 to time 3, $X_3|X_1$, is M^2 . (Composition property of the transition matrix) As $t \to \infty$, $P_t \to$ top eigenvector of M, P_{∞} (stationary distribution). $P_{\infty}M = P_{\infty}$, ie $\lambda = 1$

Exercise to check: A matrix whose rows sum to 1 will always have an eigenvector with $\lambda = 1$.

8.1.2 Finite State Continuous Time Markov Processes

Transition rates, eg $r_{e \to s}$, $r_{s \to e}$, are exponential random variables. Whichever event happens first is the path you choose.

8.1.3 Continuous Time, Continuous State Markov Processes

Definition 8.2 A transition kernal is a map from point x in state space χ to distributions on state space.

The probability that x transitions to somewhere in A is $\gamma(A|x)$ for any set $A \subset \chi$.

A continuous time Markov process has a transition kernel for every pair of time points $t_1 < t_2$.

 $\gamma_{t_2|t_1}(\cdot|x)$ is the probability distribution for the state at time t_2 given we start from state x at time t_1 . $\gamma_{t_2|t_1}(dy|x)$ is the probability of transitioning into dy.

Denote the state at time t by X_t . Then $\gamma_{t_2|t_1}(\cdot|x)$ is the law of $X_{t_2}|X_{t_1} = x$.

8.1.3.1 Compositional Property

$$(\gamma_{t_2|t_1} \circ \gamma_{t_3|t_2})(dz|x) = \int \gamma_{t_2|t_1}(dy|x)\gamma_{t_3|t_2}(dz|y)$$

= $\gamma_{t_3|t_1}(dz|x)$ definition of Markov (8.1)

8.2 Developmental Stochastic Processes

 \mathbb{P} describes the population of cells at time t. $\gamma_{t2|t1}$ describes the "transitions". We interpret $\gamma_{t2|t1}(\cdot|x)$ as the distribution of descendants of x.

$$\gamma: \underbrace{x}_{\text{at time } t_1} \xrightarrow{\longmapsto} \operatorname{descendants at time } \underbrace{\gamma_{t_2|t_1}(\cdot|x)}_{t_2, \text{ probability measure on } \chi}$$

For any set $A \subset \chi$, $\gamma(A|x)$ is the probability that the cell x has a descendant in A.

Note:

Consider a random cell X_{t_2} at time t_2 . $X_{t_2} \sim \mathbb{P}_{t_2}$. Define A_{t_1} to be the unique ancestor of X_{t_2} .

 $A_{t_1} \sim \mathbb{Q}_{t_1} \neq \mathbb{P}_{t_1}$

We can define a joint distribution $\gamma_{t_2,t_1} = (A_{t_1}, X_{t_2})$. There is a nice relationship between $\gamma_{t_2|t_1}$ and γ_{t_2,t_1} . Details next class.

8.2.1 Sampling from an Elemental Stochastic Process with a scRNA-seq Time Course

Goal: Learn about $\gamma_{t2|t1}$. But measurements kill cells. So we can't look at transitions in high dimensional χ .

Steps:

- 1. Prepare independent populations following the same process
- 2. Sample at different time points

At time t_1 get samples $X_1, X_2, ..., X_{n1} \sim \mathbb{P}_{t1}$ At time t_2 get samples $Y_1, Y_2, ..., Y_{n2} \sim \mathbb{P}_{t2}$ \vdots At time t_T get samples $Z_1, Z_2, ..., Z_{nT} \sim \mathbb{P}_{tT}$

We can construct $\hat{\mathbb{P}}_{t1} = \sum_{i=1}^{n_i} \delta_{x_i}$, but how do we construct $\gamma_{t2|t1}$?

Methods to construct lineage trajectories:

- 1. Computationally infer from samples $\hat{\mathbb{P}}_{t1}, \hat{\mathbb{P}}_{t2}, \hat{\mathbb{P}}_{t3}, \ldots$
- 2. Lineage tracing at time t_i

Gives information on lineage tree, but not state of the ancestors.

Use CRISPR to create mutations in an unimportant part of DNA. It is still a bit of an open problem how to merge this data with scRNA-seq.

Target site for Lineage Tracing

3. RNA velocity

If we read enough of the RNA sequence, we can tell if it has been spliced or not. Splicing occurs with a given rate. The longer mRNA has been around, the more likely it has been spliced.

