Math 612: Single Cell Analysis 2019W Term 1

Lecture 8: October 1
Lecturer: Geoffrey Schiebinger Scribe: Sibyl Drissler

8.1 Markov Processes

8.1.1 Finite State Markov Processes
Definition 8.1 Transition Matriz: What is X1 given X ?

X; = {Eat, Sleep, Active},t =1,2,3

E A S

05 0 05| E
M=105 05 0| a
0 05 05| s

Note: The rows sum to 1.

If we know z, = E, X1 ~ M (é). If we think that the state at time ¢ is P, = (
through M to get the distribution over states at time ¢ + 1.

[l

Z% ), then we can push P,

P =MP,

so for x, = E, Xo ~ MX, = M? (é).

The transition from time 1 to time 3, X3|X;, is M?. (Compostition property of the transition matrix)
As t — o0, P, — top eigenvector of M, P, (stationary distribution).

PoM =Py ie A=1

Exercise to check: A matrix whose rows sum to 1 will always have an eigenvector with A = 1.

8.1.2 Finite State Continuous Time Markov Processes

Ts—
Tess

Transition rates, eg re_, s, Ts—e, are exponential random variables. Whichever event happens first is the path
you choose.
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8.1.3 Continuous Time, Continuous State Markov Processes

Definition 8.2 A transition kernal is a map from point x in state space x to distributions on state space.

S S
~~ ~——
point probability measure

The probability that x transitions to somewhere in A is y(A|x) for any set A C x.
A continuous time Markov process has a transition kernel for every pair of time points t; < ts.

Yto)t, (-|7) is the probability distribution for the state at time t» given we start from state z at time ;.
Vto)t, (dy|x) is the probability of transitioning into dy.

Vta|ty dy

L T

Denote the state at time ¢ by X;. Then 7, (-|z) is the law of X, | Xy, = z.

8.1.3.1 Compositional Property

(tatts © Yeajty)(d2l) = / Yoalts (Y1) Y20 02 (A1)

= Vis|t, (dz|x)  definition of Markov

(8.1)
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8.2 Developmental Stochastic Processes

time t

[P describes the population of cells at time t. ;5,1 describes the "transitions”. We interpret *th‘tl(-|x) as
the distribution of descendants of z.

(NG Vot (1)
at time ¢; descendants at time to, probability measure on y

For any set A C x, v(A|z) is the probability that the cell x has a descendant in A.

Note:

Consider a random cell Xy, at time to. Xy, ~ Py,. Define A;, to be the unique ancestor of Xy,.

Ay, = Ancest(Xy,)

2/5

t
1 t

At1 ~ Qtl 7é ]P)tl

We can define a joint distribution v, ¢, = (A¢,, X¢,). There is a nice relationship between 7y, ;, and vz, ¢,
Details next class.

8.2.1 Sampling from an Elemental Stochastic Process with a scRNA-seq Time
Course

Goal: Learn about v;o);;. But measurements kill cells. So we can’t look at transitions in high dimensional
X-

Steps:

1. Prepare independent populations following the same process

2. Sample at different time points

At time 1 get samples X1, Xo, ..., Xp1 ~ Py
At time t5 get samples Y1,Ys, ..., Y0 ~ Pys



8-4 Lecture 8: October 1

At time tT get Samples Zl, ZQ, veey ZnT ~ ]P)tT
We can construct Py; = >t 8z, but how do we construct Yol ?

Methods to construct lineage trajectories:

1. Computationally infer from samples Py, ]f”tg, ]f”tg, e

2. Lineage tracing at time ¢;

Gives information on lineage tree, but not state of the ancestors.

Use CRISPR to create mutations in an unimportant part of DNA. It is still a bit of an open problem
how to merge this data with scRNA-seq.

ml ()m3

% 9%

Target site for Lineage Tracing
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3. RNA velocity

If we read enough of the RNA sequence, we can tell if it has been spliced or not. Splicing occurs with
a given rate. The longer mRNA has been around, the more likely it has been spliced.
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