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Inferring developmental couplings with growth

Definition 9.1 (Developmental coupling) γt1,t2 is the joint distribution of a random cell Xt2 ∼ Pt2 at
time t2 and its ancestor At1 = Ancest(Xt2) ∼ Qt1 ∝ Pt1gt2−t1 where g is called the growth rate.

Intuition for the growth function g: We model the growth rate according to a birth-death process with
some birth rate β(x) and death rate δ(x). At a “birth event”, the mass in a small volume dx increases by 1;
at a “death event”, path stops and mass decreases. That is, g(x) = exp{β(x)− δ(x)}.
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Figure 9.1: Illustration of developmental process.

In the actual inference, we sample from the developmental process Pt independently at time t1, t2, · · · . For
example, Figure 9.1a shows two realizations of cell growth represented by the red dotted line and black solid
line in the embedded space. The red points represent for the random cell samples at time t1 and black points
represent for the random cell samples at time t2. Our goal is to infer the coupling γt1,t2 and the transition
kernel γt2|t1 where

γt2|t1(·|a) ∼ {Xt2 |At1 = a}

and

γt1,t2(da, dx) = Qt1(da)γt2|t1(dx|da).
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Figure 9.2: Two strategies in red and black respectively for moving the boxes from current to desired location.

Figure 9.1b illustrate the connection of developmental coupling and the recovery of Waddington’s landscape.
We sample from population Pt at time t1, t2, t3, · · · . The estimated developmental coupling based on these
samples are given in red dotted line. We hope the red dotted line can recovery the Waddington’s landscape.
Traditional approaches for the recovery of Waddington’s landscape includes Monocle, URD, AGA, slingshot,
etc which involves non-convex optimization. The non-convex optimization problems are difficult in general as
they may have multiple locally optimal points. We instead consider the recovery of Waddington’s landscape
with convex optimization.

Inferring developmental couplings with convex optimization

The inference of developmental couplings in this course is mainly based on the optimal transportation theory.
Optimal transport (OT) has a long history starting from 1781 when the French mathematician and physicist
Gaspard Monge (1746-1818) formulated the original problem. He considered the problem of how to move
a pile of sand to fill up a hole with minimal cost. The assignment of the sand from the original location
to the final location is called the “transport plan” or “transportation plan”. The terminology “optimal
transport” comes from the fact that we are looking for the transportation plan with minimum cost. The
modern definition of optimal transport is the reformulation of Monge’s problem by the Russian economist
Leonid Kantorovich in 1947.

Definition 9.2 (Optimal transport) Let P and Q be two probability measures defined on space X , let
c : X × X → R+ ∪ {+∞} be a cost function. The optimal transport problem look for a coupling π∗ so that

π∗ = arg min
π

Eπ{c(X,Y )}

under constraints
(X,Y ) ∼ π, X ∼ P, Y ∼ Q.

Example 9.3 (Optimal transportation plan and cost function) Let us consider the following exam-
ple where ten identical boxes are at current location 1, 2, · · · , 10 needs to be moved to desired location at
2, 3, · · · , 11. There are two proposed strategies as illustrated in Figure 9.2 to move these boxes: the strategy
in black that keeps box at location 2 to 10 and move box at location 1 to location 11; the strategy in red moves
all the boxes to the location on its right. The question is which strategy is better? Indeed, the optimal strategy
depends on the choice of the function. Let c(x, y) be the cost for moving unit mass from x to y.

• If c(x, y) = |x− y|2, the total cost for red strategy is 10× 12 while the total cost for the black strategy
is 1× 102, therefore, red strategy is better.
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• If c(x, y) = |x− y|, the total cost for both strategy is 10, then these two strategies are equally good.

• If c(x, y) =
√
|x− y|, then the black strategy is better.

Example 9.4 (Deliver goods) There are 3 bakeries at position x1, x2, x3 and 3 restaurants at position
y1, y2, y3. The 3 bakeries respectively produce b1 = 10, b2 = 5, and b3 = 3 loaves. The 3 restaurants
respectively consumes r1 = 6, r2 = 6, and r3 = 6 loaves.

Question: If it costs c(x, y) to move a loaf from bakery at location x to a restaurant at location y, what is
the optimal way to transport the goods?

In this case, the transport plan is a matrix π = (πij) ∈ R3×3
≥0 with πij represents the number of loaves that is

transported from bakery at location xi to restaurant at location yj. Let us assume that the loaves are allowed
to break into pieces. Then the optimal transportation plan π∗ is

π∗ = arg min
π

3∑
i=1

3∑
j=1

πijc(xi, yj)

subject to {∑3
j= πij = bi, ∀i = 1, 2, 3∑3
i= πij = rj , ∀j = 1, 2, 3

The optimization problem above is called a “linear program”.

The estimation of developmental coupling for developmental process can also be formulated as a optimal

transportation problem. We will connect Q̂t1 ∝ P̂t1gt2−t1 where Q̂t1 = N−11

∑N1

i=1
δxi

gt2−t1 (xi)

N−1
1

∑
i g

t2−t1 (xi)
to P̂t2 =

N−12

∑
i δyi with an optimal transport problem:

π̂ = arg min
π

Eπ{c(X,Y )}

such that (X,Y ) ∼ π, X ∼ Q̂t1 , and Y ∼ P̂t2 . Then π̂ will be an estimate for γt1,t2 .


