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Abstract
Let 𝑝 be a prime and 𝑛 a positive integer such that

√
𝑝

2
+

1 ⩽ 𝑛 ⩽
√
𝑝. For any arithmetic progression 𝐴 of length

𝑛 in 𝔽𝑝, we establish an asymptotic formula for the num-
ber of directions determined by 𝐴 × 𝐴 ⊂ 𝔽2𝑝. The key
idea is to reduce the problem to counting the number
of solutions to the bilinear Diophantine equation 𝑎𝑑 +
𝑏𝑐 = 𝑝 in variables 1 ⩽ 𝑎, 𝑏, 𝑐, 𝑑 ⩽ 𝑛; our asymptotic for-
mula for the number of solutions is of independent inter-
est.
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1 INTRODUCTION

1.1 The number of directions determined by a set of ordered pairs

Let 𝐹 be a field, and let 𝑈 ⊂ 𝐹2 be a finite set of ordered pairs. The set of directions determined
by 𝑈 is defined to be

𝑈 =
{
𝑏 − 𝑑

𝑎 − 𝑐
∶ (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝑈, (𝑎, 𝑏) ≠ (𝑐, 𝑑)

}
(1)

considered as a subset of 𝐹 ∪ {∞}, where∞ is the vertical direction resulting from 𝑎 = 𝑐. The the-
ory of directions is well-studied, particularly when 𝐹 = 𝔽𝑝 is a finite field—see, for example, [3,
26]. One of themost important results in the subject is the following lower bound on the cardinal-
ity of 𝑈 , which was proved by Rédei [21] in the case |𝑈| = 𝑝 and later extended by Szőnyi [26,
Theorem 5.2] to any |𝑈| ⩽ 𝑝.
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Theorem 1.1 (Szőnyi). Let 𝑝 be a prime, and let 𝑈 ⊂ 𝔽2𝑝 with 1 < |𝑈| ⩽ 𝑝. Then either 𝑈 is con-
tained in a line, or𝑈 determines at least |𝑈|+3

2
directions.

Di Benedetto, Solymosi, and the second author [7, Theorem 1] improved Theorem 1.1 when 𝑈
has a Cartesian product structure.

Theorem 1.2 (Di Benedetto/Solymosi/White). Let 𝑝 be a prime, and let 𝐴, 𝐵 ⊂ 𝔽𝑝 be sets each of
size at least 2 such that |𝐴||𝐵| < 𝑝. Then the set of points 𝐴 × 𝐵 ⊂ 𝔽2𝑝 determines at least |𝐴||𝐵| −
min{|𝐴|, |𝐵|} + 2 directions.
We remark that the set of directions determined by 𝐴 × 𝐴 in Theorem 1.2 is the set (𝐴 −

𝐴)∕(𝐴 − 𝐴). Estimating the size of (𝐴 − 𝐴)∕(𝐴 − 𝐴) is often a critical step in sum-product and
character-sum results over finite fields—see, for example, [19, 22].
For positive integers 𝑛, define [𝑛] = {1, 2, … , 𝑛}. The authors of [7] observed that Theorem 1.2

is tight for long rectangles of the form [3] × [2𝑛 − 1], and speculated that Theorem 1.2 might be
improved for Cartesian products of the form 𝐴 × 𝐴. In this work, we show that this is indeed the
case for 𝐴 = [𝑛] by determining an asymptotic formula for the number of directions determined
by [𝑛]2 ⊂ 𝔽2𝑝, for all primes 𝑝.
The statement of our main theorem involves the continuous function

𝐷(𝜆) =

⎧⎪⎪⎨⎪⎪⎩

12

𝜋2
𝜆2, 𝜆 ∈ [0, 1√

2
],

6

𝜋2

(
2 Li2(𝜆

2) + log2(𝜆2) − 2(1 − 𝜆2) log(𝜆−2 − 1) + 2(1 − 𝜆2)
)
− 1, 𝜆 ∈ ( 1√

2
, 1),

1, 𝜆 ⩾ 1,

(2)

where

Li2(𝑥) = −∫
𝑥

0

log(1 − 𝑡)

𝑡
𝑑𝑡 (3)

is the dilogarithm function. Figure 1 shows the graph of 𝐷(𝜆) as a gold, turquoise, and red (solid
and dashed) curve, where each color represents a piece of the piecewise defined function. The
purple (dotted) curve is the graph of 𝑦 = 𝜆2, whose significance we will mention momentarily.
We may now state our main result, an asymptotic formula for the number of directions deter-

mined by [𝑛]2, or equivalently by 𝐴2 for any arithmetic progression 𝐴 of length 𝑛 in 𝔽𝑝 (since all
such sets are linearly equivalent and thus yield the same set of directions).

Theorem 1.3. The number of directions determined by [𝑛]2 ⊂ 𝔽2𝑝 is

𝐷

(
𝑛√
𝑝

)
𝑝 + 𝑂

(
𝑝3∕4(log 𝑝)2

3∕2+1
)
,

where the function 𝐷(𝜆) is defined in equation (2).
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F IGURE 1 Comparison of 𝐷(𝜆) (upper curve) and 𝜆2, the bound from [7] (lower curve). The three textures
of the upper curve indicate the three cases of the definition (2) of 𝐷(𝜆)

It is a simple consequence of the pigeonhole principle that any set 𝑈 ⊂ 𝔽2𝑝 with |𝑈| > 𝑝 will
determine all 𝑝 + 1 directions (since in 𝔽2𝑝 there are exactly 𝑝 lines of any particular slope).
Therefore, estimating the number of directions determined by [𝑛]2 ⊂ 𝔽2𝑝 is interesting only when
𝑛 ⩽

√
𝑝. On the other hand, if𝑛 is sufficiently small relative to𝑝, it is easy to see that the number of

directions determined by [𝑛]2 is the same inℚ and 𝔽𝑝; Lemma 2.1 gives a precise statement to this

effect when 𝑛 ⩽
√

𝑝

2
. The interesting range 𝑛 ∈ (

√
𝑝

2
,
√
𝑝), corresponding to the case 𝜆 ∈ ( 1√

2
, 1)

in the definition of𝐷(𝜆), is the range inwhichTheorem 1.3 is nontrivial andnew. In particular, pre-
viously there was no nontrivial upper bound, while Theorem 1.2 applied to the case 𝐴 = 𝐵 = [𝑛]
gave the best known lower bound (depicted by the purple curve in Figure 1); note that our result
actually gives an asymptotic formula in this interesting range.
We remark that the dilogarithm function Li2 appears in many different contexts in number

theory. In particular, Cilleruelo and Guijarro-Ordóñez [4] showed that the typical size of the ratio
set 𝐴∕𝐴 for a random set 𝐴 ⊂ [𝑛] also involves the dilogarithm function.
The main ingredient of the proof of Theorem 1.3 is Theorem 1.11, which is a purely number-

theoretical statement giving an asymptotic formula for the number of solutions to the bilinear
Diophantine equation 𝑎𝑑 + 𝑏𝑐 = 𝑝with the variables in [𝑛]. Our proof could be adapted to obtain
an asymptotic formula for the number of directions determined by [𝑚] × [𝑛] ⊂ 𝔽2𝑝, although the
details would be more complicated.
Since the difference between the number of directions determined by [𝑛]2 and by [𝑛 + 1]2 can

be greater than 𝑛 (when 𝑛 is prime, for example), an error term of at least 𝑂(
√
𝑝) is unavoidable

in Theorem 1.3. We conjecture that the true size of the error term is
√
𝑝 up to logarithmic factors.

Incidentally, note that the difference between the number of directions determined by [𝑛]2 and
by [𝑛 + 1]2 is also 𝑂(𝑛), which gives another way to see that the function 𝐷(𝜆) appearing in the
asymptotic formula in Theorem 1.3 is Lipschitz continuous.
We now give several consequences of Theorem 1.3. The following theorem, due to Solymosi [25,

Theorem 4], provides an extension of the classical Thue–Vinogradov lemma from elementary
number theory. We use the notation 𝔽∗𝑝 = 𝔽𝑝 ⧵ {0}.
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Theorem 1.4 (Solymosi). Let 𝑝 be a prime. For any 𝛼, 𝛽 ∈ ℕ satisfying 𝛼(𝛽 + 1) ⩽ 𝑝 − 1, there
are at least 𝛼(𝛽 + 1) distinct elements 𝑎 ∈ 𝔽∗𝑝 for which there exist 𝑥 ∈ [𝛼] and 𝑦 ∈ [𝛽] such that
𝑎𝑥 ≡ ±𝑦 (mod 𝑝).
Both the statement and the proof of Theorem 1.4 share some similarities with Theorem 1.2;

in fact, Theorem 1.4 can be viewed as a lower bound for the number of directions determined
by [𝛼] × [𝛽]. Therefore, we see that Theorem 1.3 immediately improves Theorem 1.4 in the case
𝛼 = 𝛽 <

√
𝑝; see also [25, Remark 6] for a related discussion when 𝛼 = 𝛽 <

√
𝑝

2
. The lower curve

in Figure 1 represents the lower bound in Theorem 1.4, while the upper curve represents our
asymptotic formula, which can be rephrased as follows.

Corollary 1.5. Let 𝑝 be a prime. For any positive integer 𝑛 satisfying 𝑛 <
√
𝑝, there are

𝐷( 𝑛√
𝑝
)𝑝 + 𝑂(𝑝3∕4(log 𝑝)2

3∕2+1) distinct elements 𝑎 ∈ 𝔽∗𝑝 for which there exist 𝑥, 𝑦 ∈ [𝑛] such that
𝑎𝑥 ≡ ±𝑦 (mod 𝑝).
It is possible to generalize Theorems 1.1 and 1.2 tomore general finite fields, although themeth-

ods become more technical; see, for example, the survey paper by Szőnyi [26] and recent papers
by Dona [8] and the third author [27]. On the other hand, it is straightforward to generalize our
Theorem 1.3 to an arbitrary finite field, since any arithmetic progression of length 𝑛 in 𝔽𝑝𝑘 is still
linearly equivalent to [𝑛]. Moreover, we can replace [𝑛] by sets𝐴 such that𝐴 − 𝐴 contains a long
arithmetic progression, since the size of the direction set 𝐴×𝐴 = (𝐴 − 𝐴)∕(𝐴 − 𝐴) is invariant
under any affine transformation of𝐴. Recall that a homogeneous arithmetic progression is an arith-
metic progression whose first term is equal to its common difference. Theorem 1.3 immediately
implies the following lower bound.

Corollary 1.6. Let 𝐹 be a field with characteristic 𝑝. Let 𝐴 ⊂ 𝐹 be a set such that 𝐴 − 𝐴 contains
a homogeneous arithmetic progression of length 𝑛. Then the number of directions determined by
𝐴 × 𝐴 ⊂ 𝐹2 is at least

𝐷

(
𝑛√
𝑝

)
𝑝 + 𝑂

(
𝑝3∕4(log 𝑝)2

3∕2+1
)
.

We digress slightly to give an example where Corollary 1.6 is much stronger than the earlier
theorems. Since we will be content with noting the relevant orders of magnitude rather than the
leading constants, we note that the conclusions in this example follow already from Theorem 1.2
once one notes that it suffices to consider homogeneous arithmetic progressions in the difference
set 𝐴 − 𝐴.

Example 1.7. The Stanley sequence 𝑆 ⊂ ℤ consists of all nonnegative integers whose base-3 rep-
resentation contains only the digits 0 and 1. It was introduced in [20] as an example of a set con-
taining no arithmetic progressions of length 3; for our purposes, however, the relevant property
is that its finite truncations 𝑆𝑛 = 𝑆 ∩ [0, 𝑛] are small yet their difference sets contain long homo-
geneous arithmetic progressions. In particular, 𝑛𝜂 ≪ |𝑆𝑛|≪ 𝑛𝜂 where 𝜂 = log 2

log 3
≈ 0.631; but it is

also easy to show that [1, 𝑛
3
] ⊂ 𝑆𝑛 − 𝑆𝑛.
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Fix a prime 𝑝 ⩾ 𝑛 and consider 𝑆𝑛 × 𝑆𝑛 as a subset of 𝔽2𝑝. A direct application of Theorem 1.1
shows only that the number of directions determined by 𝑆𝑛 × 𝑆𝑛 is ≫ min{|𝑆𝑛|2, 𝑝}. However,
Corollary 1.6 shows that the number of directions determined by 𝑆𝑛 × 𝑆𝑛 is ≫ min{𝑛2, 𝑝} ≫

min{|𝑆𝑛|2∕𝜂, 𝑝}, where 2𝜂 ≈ 3.17. (We also note that no better upper bound for the number of direc-
tions determined by 𝑆𝑛 × 𝑆𝑛 is known other than the trivialmin{|𝑆𝑛|4, 𝑝}.)
Next we consider the case where 𝐴 is “close to” an arithmetic progression, in which case we

expect the doubling constant |𝐴 − 𝐴|∕|𝐴| to be small. The structure of sets with small doubling
constant has been widely studied since Freiman’s seminal work [9]. Freiman’s “3𝑘 − 4 theorem”
states that if𝐴 is a finite set of integers satisfying |𝐴 + 𝐴| ⩽ 3|𝐴| − 4, then𝐴must be contained in
a short arithmetic progression; his celebrated “2.4 theorem” [9, Theorem2.1] is a similar statement
in the finite field setting. Recently, Lev and Shkredov [14] refined Freiman’s work and showed the
following “2.6 theorem” in terms of 𝐴 − 𝐴.

Theorem1.8 (Lev/Shkredov). Let𝑝 be a prime. If𝐴 ⊂ 𝔽𝑝 such that |𝐴| < 0.0045𝑝, and |𝐴 − 𝐴| ⩽
2.6|𝐴| − 3, then𝐴 is contained in an arithmetic progression 𝑃 with at most |𝐴 − 𝐴| − |𝐴| + 1 terms.
Note that if 𝐴 is contained in an arithmetic progression 𝑃, then we can use Theorem 1.3 to give

an asymptotic formula for the number of directions determined by 𝑃 × 𝑃, and hence an upper
bound for the number of directions determined by 𝐴 × 𝐴. This observation, together with Theo-
rem 1.8, immediately imply the following corollary.

Corollary 1.9. Let 𝑝 be a prime. Let 𝐴 ⊂ 𝔽𝑝 satisfy |𝐴| ⩽√𝑝 and |𝐴 − 𝐴| ⩽ 2.6|𝐴| − 3. Then the
number of directions determined by 𝐴 × 𝐴 ⊂ 𝔽2𝑝 is at most

𝐷

(|𝐴 − 𝐴| − |𝐴| + 1√
𝑝

)
𝑝 + 𝑂

(
𝑝3∕4(log 𝑝)2

3∕2+1
)
,

where the function 𝐷(𝜆) is defined in equation (2).

1.2 The number of solutions to 𝒂𝒅 + 𝒃𝒄 = 𝒑

In Section 2, we will reduce the problem of counting the number of directions to estimating the
number of solutions to the Diophantine equation 𝑎𝑑 + 𝑏𝑐 = 𝑝. For convenience, we introduce the
following notation.

Definition 1.10. Let 𝑁(𝑝, 𝑛) denote the number of solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4 to the equa-
tion 𝑎𝑑 + 𝑏𝑐 = 𝑝.

Since 𝑎𝑑 + 𝑏𝑐 ⩽ 2𝑛2 when (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4, we see that 𝑁(𝑝, 𝑛) = 0 trivially when 𝑛 <
√

𝑝

2
.

Our secondmain theorem gives an asymptotic formula for𝑁(𝑝, 𝑛) in the same “interesting” range
𝑛 ∈ (

√
𝑝

2
,
√
𝑝) as in the previous section. Throughout this paper, it will be convenient for us to

define the positive parameter 𝜆 which will always have the following relationship with 𝑝 and 𝑛.

𝑛 = 𝜆
√
𝑝. (4)
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Theorem 1.11. Let 𝑝 be a prime, let 1√
2
< 𝜆 < 1, and set 𝑛 = 𝜆

√
𝑝. The number of solutions

(𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4 to the equation 𝑎𝑑 + 𝑏𝑐 = 𝑝 is

𝑁(𝑝, 𝑛) =
(
12

𝜋2
𝜆2 − 𝐷(𝜆)

)
𝑝 + 𝑂

(
𝑝3∕4(log 𝑝)2

3∕2+1
)
, (5)

where the function𝐷(𝜆) is defined in equation (2), and the implied constant in the error term is abso-
lute.

We will see in Section 2 that Theorem 1.11 (together with Lemma 2.4) implies Theorem 1.3.
Therefore, our main task in this paper is to prove Theorem 1.11.
For the rest of this section, we explore some interesting consequences of Theorem 1.11, as well

as revisiting known upper bounds and lower bounds on 𝑁(𝑝, 𝑛).
Note that when 𝑛 <

√
𝑝, we have 0 < 𝑎𝑑 + 𝑏𝑐 < 2𝑝 whenever 𝑎, 𝑏, 𝑐, 𝑑 ∈ [𝑛]; in this range,

therefore, the equation 𝑎𝑑 + 𝑏𝑐 = 𝑝 is equivalent to the congruence −𝑎𝑑 ≡ 𝑏𝑐 (mod 𝑝). The con-
gruence 𝑎𝑏 ≡ 𝑐𝑑 (mod 𝑝) is well-studied (see, for example, [2, 5]), and similar bilinear congru-
ences have been examined by many mathematicians. The standard way to estimate the number
of solutions to such bilinear congruences is to estimate fourth moments of character sums.
For any integer 𝑢 not divisible by 𝑝, let 𝑁𝑢(𝑝, 𝑛) denote the number of solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈

[𝑛]4 to the congruence 𝑢𝑎𝑏 ≡ 𝑐𝑑 (mod 𝑝), where 𝑎, 𝑏, 𝑐, 𝑑 ∈ [𝑛]. From the standard orthogonality
relation

∑
𝜒 (mod 𝑝)

𝜒(𝑎) =

{
𝑝 − 1, if 𝑎 ≡ 1 (mod 𝑝),
0, otherwise,

where the sum runs over all Dirichlet characters modulo 𝑝 (refer to [18, chapter 4], for example),
it follows that

𝑁𝑢(𝑝, 𝑛) =
1

𝑝 − 1

∑
𝜒 (mod 𝑝)

∑
1⩽𝑎,𝑏,𝑐,𝑑⩽𝑛

𝜒(𝑢𝑎𝑏𝑐−1𝑑−1) =
1

𝑝 − 1

∑
𝜒 (mod 𝑝)

𝜒(𝑢)
||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4. (6)

When 𝜒 = 𝜒0 is the principal character, each 𝜒(𝑚) in the inner sum equals 1, and therefore
the contribution to the right-hand side from 𝜒 = 𝜒0 is exactly

𝑛4

𝑝−1
; on the other hand, recently

Kerr [13] proved the following sharp estimate (up to the implied constant):

1

𝑝 − 1

∑
𝜒≠𝜒0

||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4 ≪ 𝑛2 log 𝑝, (7)

which answered a question by Ayyad et al. [2]; see [13, section 1] for a discussion of related work.
It follows that for any 1 ⩽ 𝑛 ⩽ 𝑝 − 1 and 1 ⩽ 𝑢 ⩽ 𝑝 − 1,

𝑁𝑢(𝑝, 𝑛) =
𝑛4

𝑝 − 1
+ 𝑂(𝑛2 log 𝑝) (8)

(as remarked at the end of [2]; see also [5, Lemma 5] for a related discussion). Although this char-
acter sum approach succeeds in obtaining the asymptotic formula (8) when 𝑛 grows faster than
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√
𝑝 log 𝑝, over short intervals the estimates are poorer. In particular, in the range 𝑛 <

√
𝑝, for

which 𝑁(𝑝, 𝑛) = 𝑁−1(𝑝, 𝑛), equation (8) simply states that 𝑁(𝑝, 𝑛) ≪ 𝑝 log 𝑝, which is a poor
estimate compared to Theorem 1.11.
We have just seen that the right-hand side of Equation (7) is dominated by the contribution

of the principal character 𝜒0 when 𝑛 grows faster than
√
𝑝 log 𝑝. However, it turns out that the

situation is drastically different when 𝑛 <
√
𝑝. Note that it follows immediately from equation (6)

(and the fact that 𝜒(1) = 1 always) that

𝑁1(𝑝, 𝑛) + 𝑁−1(𝑝, 𝑛) =
2

𝑝 − 1

∑
𝜒 (mod 𝑝)
𝜒(−1)=1

||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4, (9)

𝑁1(𝑝, 𝑛) − 𝑁−1(𝑝, 𝑛) =
2

𝑝 − 1

∑
𝜒 (mod 𝑝)
𝜒(−1)=−1

||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4.

When 𝑛 <
√
𝑝, we have already seen that 𝑁−1(𝑝, 𝑛) = 𝑁(𝑝, 𝑛) and thus 𝑁−1(𝑝, 𝑛) ≪ 𝑛2 by The-

orem 1.11. On the other hand, Ayyad et al. [2, Theorem 3] obtained an asymptotic formula for
the number of solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4 to 𝑎𝑑 = 𝑏𝑐. In particular, when 𝑛 <

√
𝑝 the equa-

tion 𝑎𝑑 = 𝑏𝑐 is similarly equivalent to the congruence 𝑎𝑑 ≡ 𝑏𝑐 (mod 𝑝), and their result becomes
the asymptotic formula

𝑁1(𝑝, 𝑛) =
12

𝜋2
𝑛2 log 𝑛 + 𝑂(𝑛2) when 𝑛 <

√
𝑝.

Consequently, equation (9) implies the following result.

Corollary 1.12. Let 𝑝 be a prime. If 𝑛 <
√
𝑝, then

1

𝑝 − 1

∑
𝜒(−1)=1

||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4 = 6

𝜋2
𝑛2 log 𝑛 + 𝑂(𝑛2),

1

𝑝 − 1

∑
𝜒(−1)=−1

||||
𝑛∑
𝑚=1

𝜒(𝑚)
||||4 = 6

𝜋2
𝑛2 log 𝑛 + 𝑂(𝑛2).

In other words, when examining the fourth moment of character sums modulo 𝑝 (that is, the
right-hand side of equation (6) when 𝑢 = 1), the contribution from odd characters is asymptoti-
cally equal to the contribution from even characters when 𝑛 <

√
𝑝. This is a stark contrast to the

dominance of the principal character when 𝑛 is only a bit larger than
√
𝑝 log 𝑝, which suggests

that it would be interesting to study both sides of equation (6) as 𝑛 transitions between these two
quite close orders of magnitude.
Returning to the number of solutions𝑁(𝑝, 𝑛) itself, it seems nontrivial to show from first prin-

ciples even that 𝑁(𝑝, 𝑛) ⩾ 1 (that is, that there exists (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4 with 𝑎𝑑 + 𝑏𝑐 = 𝑝) when
𝑛 <

√
𝑝. One may try to express 𝑁(𝑝, 𝑛) as a convolution by estimating the number of points

of the modular hyperbola {(𝑎, 𝑏) ∈ [𝑛]2 ∶ 𝑎𝑏 ≡ 𝑥 (mod 𝑝)} for each 𝑥 ∈ [𝑝]—see, for example,
Shparlinski’s survey paper [24]. Indeed, Hart and Iosevich [10] showed that if 𝐴 ⊂ 𝔽𝑝 satisfies
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|𝐴| ⩾ 𝑝3∕4, then 𝔽∗𝑝 ⊂ 𝐴𝐴 + 𝐴𝐴, where𝐴𝐴 = {𝑎𝑏∶ 𝑎, 𝑏 ∈ 𝐴}. Shparlinski [23] remarked that the
Hart/Iosevich proof could be easily extended to show for any 𝑥 ∈ 𝔽∗𝑝 and any 𝐴, 𝐵, 𝐶, 𝐷 ⊂ 𝔽

∗
𝑝, the

number of solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐴 × 𝐵 × 𝐶 × 𝐷 to 𝑎𝑑 + 𝑏𝑐 = 𝑥 is

|𝐴||𝐵||𝐶||𝐷|
𝑝 − 1

+ 𝑂
(√
𝑝|𝐴||𝐵||𝐶||𝐷|), (10)

which gives an asymptotic formula when |𝐴||𝐵||𝐶||𝐷| grows faster than 𝑝3. We remark that the
assumption𝑥 ≠ 0 is necessary: if𝑝 ≡ 1 (mod 4),𝐴 = 𝐵 = 𝐶 is the set of quadratic residuesmodulo
𝑝, and𝐷 is the set of quadratic non-residuesmodulo 𝑝, then |𝐴||𝐵||𝐶||𝐷|≫ 𝑝4 yet 0 ∉ 𝐴𝐷 + 𝐵𝐶.
These known results strongly suggest that it is important to distinguish the congruence 𝑎𝑑 +

𝑏𝑐 ≡ 0 (mod 𝑝) from the congruences 𝑎𝑑 + 𝑏𝑐 ≡ 𝑢 (mod 𝑝) where 𝑝 ∤ 𝑢; it seems more difficult
to study the first congruence than the latter ones. Indeed, Ayyad and Cochrane [1, Theorem 2]
showed that the congruence lattice modulo 𝑝 is well-distributed as long as 𝑎𝑑 + 𝑏𝑐 ≡ 0 (mod 𝑝)
has a solution in a prescribed region; more precisely, they proved the following result.

Theorem 1.13 (Ayyad/Cochrane). Let 𝑎, 𝑏,𝑚 be integers with 𝑚 ⩾ 1 and gcd(𝑎, 𝑏,𝑚) = 1, and
suppose that the congruence 𝑎𝑥 + 𝑏𝑦 ≡ 0 (mod𝑚) has a solution (𝑥0, 𝑦0) ∈ 𝑚 with gcd(𝑥0, 𝑦0) =
1, where

𝑚 = {(𝑥, 𝑦) ∈ ℤ2 ∶ 0 ⩽ |𝑥| ⩽√𝑚, 0 ⩽ |𝑦| ⩽√𝑚, |𝑥| + 2|𝑦| ⩾√𝑚, 2|𝑥| + |𝑦| ⩾√𝑚}. (11)

Then for any integer 𝑐, the linear congruence𝑎𝑥 + 𝑏𝑦 ≡ 𝑐 (mod𝑚)has a nonzero solutionwith |𝑥| ⩽√
𝑚 and |𝑦| ⩽√𝑚.
We show at the end of Section 2 that Theorems 1.11 and 1.13 imply the following corollary, which

is well beyond the reach of equation (10).

Corollary 1.14. There are at least ( 12
𝜋2
− 1)𝑝 + 𝑂(𝑝3∕4(log 𝑝)2

3∕2+1) ordered pairs (𝑎, 𝑏) ∈ ℤ2 ∩
[1,
√
𝑝]2 such that for any integer 𝑐, the linear congruence 𝑎𝑥 + 𝑏𝑦 ≡ 𝑐 (mod 𝑝) has a nonzero solu-

tion with |𝑥| ⩽√𝑝 and |𝑦| ⩽√𝑝.
In other words, for a positive proportion of pairs of integers 1 ⩽ 𝑎, 𝑏 ⩽

√
𝑝, every congruence

of the form 𝑎𝑥 + 𝑏𝑦 ≡ 𝑐 (mod 𝑝) with 𝑐 ∈ ℤ admits a small solution where |𝑥|, |𝑦| ⩽√𝑝.
2 REDUCTION TO 𝒂𝒅 + 𝒃𝒄 = 𝒑

The main objective of this section is to transfer the problem of estimating the number of direc-
tions determined by [𝑛]2 ⊂ 𝔽2𝑝 to estimating the number of solutions (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]

4 to the equa-
tion 𝑎𝑑 + 𝑏𝑐 = 𝑝. In particular, we show that Theorem 1.11 implies Theorem 1.3. At the end of this
section, we also show that Theorems 1.11 and 1.13 imply Corollary 1.14.
As a variant of the notation (1), for any field 𝐹 and any positive integer 𝑛 we let

𝑛(𝐹) =
{
𝑎

𝑏
∈ 𝐹∶ − 𝑛 + 1 ⩽ 𝑎, 𝑏 ⩽ 𝑛 − 1, (𝑎, 𝑏) ≠ (0, 0)}
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denote the set of directions determined by [𝑛]2 over the field 𝐹. (If 𝐹 has characteristic 𝑝 then we
add the restriction 𝑛 ⩽ 𝑝.) The size of 𝑛(𝐹) will depend on the characteristic of the underlying
field: for example, the map from𝑛(ℚ) to𝑛(𝔽𝑝) induced by the natural quotient map from ℤ to
𝔽𝑝 is clearly surjective, so that |𝑛(𝔽𝑝)| ⩽ |𝑛(ℚ)|, but in general is not injective. As suggested in
the introduction, however, this map is injective when 𝑝 is large compared to 𝑛.

Lemma 2.1. If 𝑛 <
√

𝑝

2
, then |𝑛(𝔽𝑝)| = |𝑛(ℚ)|.

Proof. Suppose that there are fewer directions determined over 𝔽𝑝 than over ℚ. Then there must
exist 𝑎, 𝑏, 𝑐, 𝑑 ∈ [−𝑛 + 1, 𝑛 − 1] and a nonzero integer 𝑘 such that 𝑎𝑑 − 𝑏𝑐 = 𝑘𝑝. But |𝑘𝑝| ⩾ 𝑝,
while the triangle inequality implies |𝑎𝑑 − 𝑏𝑐| < 2(𝑛 − 1)2 < 𝑝 by the assumption 𝑛 <√𝑝

2
; this

contradiction establishes the lemma. □

We split the directions, other than 0 and ∞, determined by [𝑛]2 over a field 𝐹 into “positive
directions” and “negative directions,” defining

+𝑛 (𝐹) =
{
𝑎

𝑏
∈ 𝐹∶ 1 ⩽ 𝑎, 𝑏 ⩽ 𝑛 − 1

}
, −𝑛 (𝐹) =

{
−
𝑎

𝑏
∈ 𝐹∶ 1 ⩽ 𝑎, 𝑏 ⩽ 𝑛 − 1

}
.

Note that in 𝔽𝑝 these sets can overlap, though in ℚ they are obviously disjoint. A slight modifi-
cation of the proof of Lemma 2.1 shows that the number of positive directions is the same over
𝔽𝑝 as over ℚ, even when 𝑛 is large enough to be within the interesting range 𝑛 ∈ (

√
𝑝

2
,
√
𝑝), and

similarly for the number of negative directions.

Lemma 2.2. If 𝑛 <
√
𝑝, then |+𝑛 (𝔽𝑝)| = |+𝑛 (ℚ)| and |−𝑛 (𝔽𝑝)| = |−𝑛 (ℚ)|.

Proof. Suppose that there are fewer positive directions determined over 𝔽𝑝 than over ℚ. Then
there must exist 𝑎, 𝑏, 𝑐, 𝑑 ∈ [𝑛 − 1] and a nonzero integer 𝑘 such that 𝑎𝑑 − 𝑏𝑐 = 𝑘𝑝. Without loss
of generality 𝑘 ⩾ 1, and so 𝑎𝑑 > 𝑝; but by assumption 𝑎𝑑 ⩽ (𝑛 − 1)2 < 𝑝, a contradiction. The
same argument applies to negative directions. □

Estimating the number of directions determined by [𝑛]2 ⊂ ℚ2, or equivalently, estimating the
number of lattice points in [𝑛]2 that are visible from the origin, is a well-known elementary exer-
cise using Möbius inversion. Because Möbius inversion will be a crucial tool for us, we now recall
some properties of the Möbius 𝜇 function, starting with its characteristic property

∑
𝑑|𝑛 𝜇(𝑑) =

{
1, if 𝑛 = 1,
0, otherwise.

(12)

We also use the asymptotic formula

∑
𝑑⩽𝑥

𝜇(𝑑)

𝑑2
=
6

𝜋2
+ 𝑂

(
1

𝑥

)
(13)
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for 𝑥 ⩾ 2 (see, for example, the proof of [18, Theorem 2.1]), as well as the asymptotic formula for
the harmonic numbers ∑

𝑑⩽𝑥

1

𝑑
= log 𝑥 + 𝑂(1). (14)

For the sake of completeness and to foreshadow our later methods, we give a proof of an estimate
for the number of directions determined by [𝑛]2 ⊂ ℚ2.

Lemma 2.3. The number of positive directions determined by [𝑛]2 ⊂ ℚ2 is 6

𝜋2
𝑛2 + 𝑂(𝑛 log 𝑛), and

the same is true for the number of negative directions.

Proof. It suffices to consider |+𝑛 (ℚ)| since−𝑛 (ℚ) = −+𝑛 (ℚ). By the characteristic property (12)
of the Möbius function,

|+𝑛 (ℚ)| = ||||{𝑎𝑏 ∈ ℚ∶ 1 ⩽ 𝑎, 𝑏 ⩽ 𝑛 − 1}||||
=

∑
1⩽𝑎,𝑏⩽𝑛−1
gcd(𝑎,𝑏)=1

1 =
∑

1⩽𝑎,𝑏⩽𝑛−1

∑
𝑑∣gcd(𝑎,𝑏)

𝜇(𝑑)

=
∑

1⩽𝑑⩽𝑛−1

𝜇(𝑑)
∑

1⩽𝑎,𝑏⩽𝑛−1
𝑑∣𝑎, 𝑑∣𝑏

1

=

𝑛−1∑
𝑑=1

𝜇(𝑑)
⌊
𝑛 − 1

𝑑

⌋2
=

𝑛−1∑
𝑑=1

𝜇(𝑑)
(
𝑛

𝑑
+ 𝑂(1)

)2
= 𝑛2

𝑛−1∑
𝑑=1

𝜇(𝑑)

𝑑2
+ 𝑂

(
𝑛

𝑛−1∑
𝑑=1

1

𝑑

)
+ 𝑂

(
𝑛−1∑
𝑑=1

1

)
=
6

𝜋2
𝑛2 + 𝑂(𝑛 log 𝑛)

by equations (13) and (14). □

In the following lemma, we see the significant connection between the size of 𝑛(𝔽𝑝) and
𝑁(𝑝, 𝑛 − 1). In particular, it is immediate that Lemma 2.4 and Theorem 1.11 together imply The-
orem 1.3.

Lemma 2.4. Let 𝑝 be a prime and 𝑛 a positive integer with 𝑛 <
√
𝑝. Then the number of directions

determined by [𝑛]2 ⊂ 𝔽2𝑝 is

12

𝜋2
𝑛2 − 𝑁(𝑝, 𝑛 − 1) + 𝑂(𝑛 log 𝑛).

Proof. Note that

|𝑛(𝔽𝑝)| = |+𝑛 (𝔽𝑝)| + |−𝑛 (𝔽𝑝)| − |+𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝)| + 2 (15)

= |+𝑛 (ℚ)| + |−𝑛 (ℚ)| − |+𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝)| + 2
=
12

𝜋2
𝑛2 + 𝑂(𝑛 log 𝑛) − |+𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝)|
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by Lemmas 2.2 and 2.3 (where the 2 counts the directions 0 and∞). Any element 𝑥 ∈ +𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝)must be simultaneously of the form 𝑥 = 𝑎

𝑏
∈ 𝔽𝑝 and 𝑥 = −

𝑐

𝑑
∈ 𝔽𝑝 where 𝑎, 𝑏, 𝑐, 𝑑 ∈ [𝑛 −

1], which implies that 𝑎𝑑 + 𝑏𝑐 ≡ 𝑏𝑑𝑥 − 𝑏𝑑𝑥 = 0 (mod 𝑝). Since 𝑛 <√𝑝 and therefore 0 < 𝑎𝑑 +
𝑏𝑐 < 2(𝑛 − 1)2 < 2𝑝, we conclude that 𝑎𝑑 + 𝑏𝑐 = 𝑝. Furthermore, each solution to 𝑎𝑑 + 𝑏𝑐 = 𝑝
with 𝑎, 𝑏, 𝑐, 𝑑 ∈ [𝑛 − 1] corresponds to the unique element 𝑎

𝑏
= − 𝑐

𝑑
∈ +𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝) (to verify

the uniqueness, it helps to note that 𝑎𝑑 + 𝑏𝑐 = 𝑝 implies that gcd(𝑎, 𝑏) = gcd(𝑐, 𝑑) = 1). There-
fore, |+𝑛 (𝔽𝑝) ∩−𝑛 (𝔽𝑝)| = 𝑁(𝑝, 𝑛 − 1), which completes the proof. □

The remainder of this paper is devoted to proving Theorem 1.11, so that we are interested in
the range 𝑛 ∈ (

√
𝑝

2
,
√
𝑝). Consistent with equation (4), we define 𝜆 = 𝑛√

𝑝
, a convention that will

hold throughout even when not explicitly mentioned (as will the assumption that 𝑝 is a prime).
Anytime we use 𝑂(⋅) or ≪ notation, the implied constants are absolute unless dependence on
particular parameters is explicitly indicated by subscripts; in particular, these implied constants
are uniform in 𝜆.
Note that if (𝑎, 𝑏, 𝑐, 𝑑) ∈ [𝑛]4 is a solution to 𝑎𝑑 + 𝑏𝑐 = 𝑝, then since 𝑐 ⩽ 𝜆

√
𝑝 and 𝑑 ⩽ 𝜆

√
𝑝

we must have 𝑎 + 𝑏 ⩾
√
𝑝

𝜆
; furthermore, we have gcd(𝑎, 𝑏) = 1 since 𝑝 is a prime. By symmetry,

we also have 𝑐 + 𝑑 ⩾
√
𝑝

𝜆
and gcd(𝑐, 𝑑) = 1. It is therefore useful to define the set of visible lattice

points in a triangular region,

𝑇 = 𝑇(𝜆, 𝑝) =
{
(𝑎, 𝑏) ∈ ℤ2 ∶ 1 ⩽ 𝑎, 𝑏 ⩽ 𝜆

√
𝑝, 𝑎 + 𝑏 ⩾

√
𝑝

𝜆
, gcd(𝑎, 𝑏) = 1

}
, (16)

so that

𝑁(𝑝, 𝑛) =
∑

(𝑎,𝑏)∈𝑇

#{(𝑥, 𝑦) ∈ 𝑇∶ 𝑎𝑥 + 𝑏𝑦 = 𝑝}. (17)

(Note that 𝑇 = ∅ if 𝜆 < 1√
2
, a fact that reflects the observation that the sets of positive and negative

directions over 𝔽𝑝 do not intersect when 𝑛 <
√

𝑝

2
, which we saw implicitly in Lemma 2.1.) This

formula reduces the estimation of𝑁(𝑝, 𝑛) to counting solutions to Diophantine linear equations,
which is an elementary task once the appropriate number-theoretic tools are in place. In Propo-
sition 2.6, we express this counting function using sums of basic arithmetic quantities that will be
amenable to further analysis. The following notation is helpful in our discussion.

Definition 2.5. For integers𝑚 and 𝑥 with𝑚 ⩾ 2 and gcd(𝑥,𝑚) = 1, let 𝑥𝑚 denote the integer in
the interval [1,𝑚 − 1] that is the multiplicative inverse of 𝑥 modulo𝑚.

Proposition 2.6. Let 𝑛 be a positive integer with
√

𝑝

2
< 𝑛 <

√
𝑝, and let 𝜆 and 𝑇 be as in equa-

tions (4) and (16). Then

𝑁(𝑝, 𝑛) = 𝜆
√
𝑝
∑

(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)
− 𝑝

∑
(𝑎,𝑏)∈𝑇

1

𝑎𝑏

−
∑

(𝑎,𝑏)∈𝑇

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
+

{
𝜆
√
𝑝

𝑎
−
𝑝𝑏𝑎
𝑎

}
− 1

)
.
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Proof. Let (𝑎, 𝑏) ∈ 𝑇 be arbitrary. Fix (𝑥0, 𝑦0) ∈ ℤ2 such that 𝑎𝑥0 + 𝑏𝑦0 = 𝑝; such a solution is
guaranteed to exist since gcd(𝑎, 𝑏) = 1, and moreover the set of integer solutions to 𝑎𝑥 + 𝑏𝑦 = 𝑝
can be parameterized as (𝑥, 𝑦) = (𝑥0 + 𝑏𝑡, 𝑦0 − 𝑎𝑡) for 𝑡 ∈ ℤ. Note that for any solution (𝑥, 𝑦) ∈ 𝑇
to 𝑎𝑥 + 𝑏𝑦 = 𝑝,

𝜆
√
𝑝 ⩾ 𝑥 =

𝑝 − 𝑏𝑦

𝑎
⩾
𝑝 − 𝑏𝜆

√
𝑝

𝑎
and 𝜆

√
𝑝 ⩾ 𝑦 =

𝑝 − 𝑎𝑥

𝑏
⩾
𝑝 − 𝑎𝜆

√
𝑝

𝑏
.

Consequently, since (𝑥, 𝑦) = (𝑥0 + 𝑏𝑡, 𝑦0 − 𝑎𝑡), the solutions (𝑥, 𝑦) ∈ 𝑇 are characterized by either
of the following (equivalent) inequalities:

𝜆
√
𝑝 − 𝑥0

𝑏
⩾ 𝑡 ⩾

𝑝 − 𝑏𝜆
√
𝑝 − 𝑎𝑥0

𝑎𝑏
and

𝑦0 − 𝜆
√
𝑝

𝑎
⩽ 𝑡 ⩽

𝑝 − 𝑎𝜆
√
𝑝 − 𝑏𝑦0

𝑎𝑏
. (18)

For any pair of real numbers 𝑟 ⩽ 𝑠, the number of integers in the interval [𝑟, 𝑠] is precisely

⌊𝑠⌋ − ⌈𝑟⌉ + 1 = (𝑠 − 𝑟 + 1) − ({𝑠} + {−𝑟}),
where {𝑟} = 𝑟 − ⌊𝑟⌋ denotes the fractional part of 𝑟. Using this formula in equation (18), with
𝑟 = (𝑦0 − 𝜆

√
𝑝)∕𝑎 and 𝑠 = (𝜆

√
𝑝 − 𝑥0)∕𝑏, we see that the number of solutions (𝑥, 𝑦) ∈ 𝑇 to 𝑎𝑥 +

𝑏𝑦 = 𝑝 is precisely

𝜆
√
𝑝
(
1

𝑎
+
1

𝑏

)
−
𝑝

𝑎𝑏
−

({
𝜆
√
𝑝 − 𝑥0

𝑏

}
+

{
𝜆
√
𝑝 − 𝑦0

𝑎

}
− 1

)
. (19)

Since 𝑎𝑥0 + 𝑏𝑦0 = 𝑝, we have 𝑥0 ≡ 𝑝𝑎𝑏 (mod 𝑏) and 𝑦0 ≡ 𝑝𝑏𝑎 (mod 𝑎). As { 𝑐𝑚 } = { 𝑑𝑚 }when 𝑐 ≡
𝑑 (mod 𝑚), we can make the substitution{

𝜆
√
𝑝 − 𝑥0

𝑏

}
+

{
𝜆
√
𝑝 − 𝑦0

𝑎

}
=

{
𝜆
√
𝑝 − 𝑝𝑎𝑏

𝑏

}
+

{
𝜆
√
𝑝 − 𝑝𝑏𝑎

𝑎

}

in equation (19). In view of equation (17), summing over all (𝑎, 𝑏) ∈ 𝑇 establishes the
proposition. □

The proof just given also allows us to show that Theorem 1.11 implies Corollary 1.14; the key
observation is that the expression (19) actually must equal either 0 or 1.

Proof of Corollary 1.14. Let 𝜆 ∈ ( 1√
2
, 1). Note that the set𝑇(𝜆, 𝑝) defined in equation (16) is a subset

of the set𝑝 defined in equation (11). In equation (19), we showed that for each (𝑎, 𝑏) ∈ 𝑇(𝜆, 𝑝),
the number of solutions (𝑥, 𝑦) ∈ 𝑇(𝜆, 𝑝) to the equation 𝑎𝑥 + 𝑏𝑦 = 𝑝 is

𝜆
√
𝑝

𝑏
+
𝜆
√
𝑝

𝑎
−
𝑝

𝑎𝑏
−

({
𝜆
√
𝑝 − 𝑥0

𝑏

}
+

{
𝜆
√
𝑝 − 𝑦0

𝑎

})
+ 1, (20)



ASYMPTOTICS FOR THE NUMBER OF DIRECTIONS DETERMINED BY [𝑛] × [𝑛] IN 𝔽2
𝑝

523

where 𝑎𝑥0 + 𝑏𝑦0 = 𝑝. However,{
𝜆
√
𝑝 − 𝑥0

𝑏

}
+

{
𝜆
√
𝑝 − 𝑦0

𝑎

}
⩾

{
𝜆
√
𝑝 − 𝑥0

𝑏
+
𝜆
√
𝑝 − 𝑦0

𝑎

}
=

{
𝜆
√
𝑝

𝑏
+
𝜆
√
𝑝

𝑎
−
𝑝

𝑎𝑏

}
,

which combined with equation (20) implies that the number of solutions is

⩽

⌊
𝜆
√
𝑝

𝑏
+
𝜆
√
𝑝

𝑎
−
𝑝

𝑎𝑏

⌋
+ 1. (21)

Moreover, the inequality 0 ⩽ (𝑎 − 𝜆
√
𝑝)(𝑏 − 𝜆

√
𝑝) = 𝑎𝑏 + 𝜆2𝑝 − (𝑎 + 𝑏)𝜆

√
𝑝 implies that

𝜆𝑎
√
𝑝 + 𝜆𝑏

√
𝑝 − 𝑝 < 𝜆𝑎

√
𝑝 + 𝜆𝑏

√
𝑝 − 𝜆2𝑝 ⩽ 𝑎𝑏 since 𝜆 < 1, which means that the expression

inside the floor function in equation (21) is less than 1. In other words, for each (𝑎, 𝑏) ∈ 𝑇(𝜆, 𝑝),
there is at most one solution (𝑥, 𝑦) ∈ 𝑇(𝜆, 𝑝) to the equation 𝑎𝑥 + 𝑏𝑦 = 𝑝.
Consequently, Theorem 1.11 implies that there are(

12

𝜋2
𝜆2 − 𝐷(𝜆)

)
𝑝 + 𝑂

(
𝑝3∕4(log 𝑝)2

3∕2+1
)

ordered pairs (𝑎, 𝑏) ∈ ℤ2 ∩ [1,
√
𝑝]2 for which 𝑎𝑥 + 𝑏𝑦 ≡ 0 (mod 𝑝) has a solution (𝑥0, 𝑦0) ∈

𝑇(𝜆, 𝑝) ⊂ 𝑝 with gcd(𝑥0, 𝑦0) = 1. We may let 𝜆 → 1− since the implicit constant is absolute, giv-
ing a main term of ( 12

𝜋2
− 1)𝑝 by continuity; the corollary now follows from Theorem 1.13. □

The only task that remains is to prove Theorem 1.11; we do so by using Proposition 2.6 to divide
the proof into two subtasks. In Section 3, we estimate

𝜆
√
𝑝
∑

(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)
− 𝑝

∑
(𝑎,𝑏)∈𝑇

1

𝑎𝑏
, (22)

from which the main term of 𝑁(𝑝, 𝑛) arises In Section 4, we estimate

∑
(𝑎,𝑏)∈𝑇

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
+

{
𝜆
√
𝑝

𝑎
−
𝑝𝑏𝑎
𝑎

}
− 1

)
, (23)

which contributes only to the error term of 𝑁(𝑝, 𝑛). In particular, Theorem 1.11 follows immedi-
ately from combining Propositions 2.6, 3.3, and 4.7.

3 MAIN TERM ESTIMATION

The goal of this section is to establish Proposition 3.3, giving an asymptotic formula for the expres-
sion (22) and thus eventually for𝑁(𝑝, 𝑛). The key idea behind the estimates in this section is that
a double sum over lattice points in a region can be approximated by a suitable double integral, and
that the contribution to the sum from visible lattice points can then be isolated using the Möbius
function. First we establish by elementary means a bound for the difference between the double
sum and the corresponding integral.
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Lemma 3.1. Let 𝑓∶ ℝ2
>0
→ ℝ>0 be a positive function that is decreasing in both arguments. Let 𝑟

and 𝑠 be positive integers with 𝑟 < 𝑠, and let 𝑟′ and 𝑠′ be real numbers satisfying 𝑟 ⩽ 𝑟′ < 𝑟 + 1 and
𝑠 − 1 < 𝑠′ ⩽ 𝑠 and 𝑟′ < 𝑠′ < 2𝑟′. Then

𝑟∑
𝓁=𝑠−𝑟

𝑟∑
𝑘=𝑠−𝓁

𝑓(𝑘,𝓁) = ∫
𝑟′

𝑠′−𝑟′ ∫
𝑟′

𝑠′−𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 + 𝜖, (24)

where

|𝜖| ⩽ ∫
𝑟′

𝑠′−𝑟′ ∫
𝑠′−𝑦+5

𝑠′−𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 + 2

𝑟∑
𝓁=𝑠−𝑟

𝑓(𝑠 − 𝓁,𝓁). (25)

Proof. First we remark that if 𝑠 ⩾ 2𝑟 − 1, it is easy to check that the double sum in equation (24)
(which might even be an empty sum) is bounded by the sum in Equation (25) and that the double
integral in equation (24) is bounded by the double integral in equation (25). Therefore, we may
assume that 𝑠 ⩽ 2𝑟 − 2. Decompose the sum

𝑟∑
𝓁=𝑠−𝑟

𝑟∑
𝑘=𝑠−𝓁

𝑓(𝑘,𝓁) =
𝑟∑

𝓁=𝑠−𝑟+2

𝑟∑
𝑘=𝑠−𝓁+2

𝑓(𝑘,𝓁)

+

(
𝑟∑

𝓁=𝑠−𝑟

(𝑓(𝑠 − 𝓁,𝓁) + 𝑓(𝑠 − 𝓁 + 1,𝓁)) − 𝑓(𝑟 + 1, 𝑠 − 𝑟)

)
. (26)

The parenthetical expression is bounded above by the second term on the right-hand side of equa-
tion (25); thus it suffices to show that the difference between the double sum on the right-hand
side of equation (26) and the double integral in equation (24) is bounded above in absolute value
by the double integral in equation (25).
The fact that 𝑓(𝑥, 𝑦) is decreasing in both arguments implies the inequalities

∫
𝓁+1

𝓁 ∫
𝑘+1

𝑘

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩽ 𝑓(𝑘,𝓁) ⩽ ∫
𝓁

𝓁−1 ∫
𝑘

𝑘−1

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (27)

Summing the first inequality over 𝑘 and 𝓁 yields

𝑟∑
𝓁=𝑠−𝑟+2

𝑟∑
𝑘=𝑠−𝓁+2

𝑓(𝑘,𝓁) ⩾ ∫
𝑟+1

𝑠−𝑟+2 ∫
𝑟+1

𝑠−⌊𝑦⌋+2 𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

⩾ ∫
𝑟+1

𝑠−𝑟+3 ∫
𝑟+1

𝑠−𝑦+3

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩾ ∫
𝑟′

𝑠′−𝑟′+5 ∫
𝑟′

𝑠′−𝑦+5

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

by the positivity of 𝑓 and the assumptions on 𝑟′ and 𝑠′. Similarly, summing the second inequality
of equation (27) over 𝑘 and 𝓁 yields

𝑟∑
𝓁=𝑠−𝑟+2

𝑟∑
𝑘=𝑠−𝓁+2

𝑓(𝑘,𝓁) ⩽ ∫
𝑟

𝑠−𝑟+1 ∫
𝑟

𝑠−⌊𝑦⌋+1 𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

⩽ ∫
𝑟

𝑠−𝑟+1 ∫
𝑟

𝑠−𝑦+1

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩽ ∫
𝑟′

𝑠′−𝑟′ ∫
𝑟′

𝑠′−𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.
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From these two chains of inequalities, we see that the double sum on the right-hand side of equa-
tion (26) is smaller than the double integral in equation (24), but by no more than

∫
𝑟′

𝑠′−𝑟′ ∫
𝑟′

𝑠′−𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 − ∫
𝑟′

𝑠′−𝑟′+5 ∫
𝑟′

𝑠′−𝑦+5

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 ⩽ ∫
𝑟′

𝑠′−𝑟′ ∫
𝑠′−𝑦+5

𝑠′−𝑦

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

recovering the double integral in equation (25) and thus establishing the lemma. □

We quickly evaluate two double integrals that will arise when applying this lemma.

Lemma 3.2. For any real numbers 𝛼 and 𝛽 satisfying 0 < 𝛽 < 𝛼 < 2𝛽,

∫
𝛽

𝛼−𝛽 ∫
𝛽

𝛼−𝑦

(
1

𝑥
+
1

𝑦

)
𝑑𝑥 𝑑𝑦 = 2

(
2𝛽 − 𝛼 + (𝛼 − 𝛽) log

𝛼 − 𝛽

𝛽

)
,

∫
𝛽

𝛼−𝛽 ∫
𝛽

𝛼−𝑦

1

𝑥𝑦
𝑑𝑥 𝑑𝑦 = 2Li2

(
𝛽

𝛼

)
+ log2

𝛼

𝛽
−
𝜋2

6
,

where the dilogarithm function Li2 was defined in equation (3).

Proof. The first double integral is straightforward to evaluate. For the second double integral,
straightforward methods using the definition (3) yield

∫
𝛽

𝛼−𝛽 ∫
𝛽

𝛼−𝑦

1

𝑥𝑦
𝑑𝑥 𝑑𝑦 = Li2

(
𝛽

𝛼

)
− Li2

(
1 −

𝛽

𝛼

)
+ log

𝛼

𝛽
⋅ log

𝛼 − 𝛽

𝛽
,

which can be transformed into the desired form using the well-known functional equation of the
dilogarithm,

Li2(𝑧) + Li2(1 − 𝑧) =
𝜋2

6
− log 𝑧 ⋅ log(1 − 𝑧)

(see, for example, [15, section 2]), valid for 0 < 𝑧 < 1. □

Using Lemma 3.1, we now find an asymptotic formula for the two sums in equation (22) (form-
ing the main term in Theorem 1.11), using the Möbius function to detect visible lattice points as
was done in the proof of Lemma 2.3.

Proposition 3.3. Let 𝑛 be a positive integer satisfying
√

𝑝

2
< 𝑛 <

√
𝑝, and let 𝜆 and 𝑇 be as defined

in equations (4) and (16). Then

𝜆
√
𝑝
∑

(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)
− 𝑝

∑
(𝑎,𝑏)∈𝑇

1

𝑎𝑏
=
(
12

𝜋2
𝜆2 − 𝐷(𝜆)

)
𝑝 + 𝑂

(√
𝑝 log2 𝑝

)
. (28)
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Proof. For the first sum, the characteristic property (12) of the Möbius function gives us

∑
(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)
=

𝑛∑
𝑑=1

𝜇(𝑑)
∑

(𝑎,𝑏)∈[𝑛]2

𝑎+𝑏⩾

√
𝑝

𝜆
𝑑∣𝑎, 𝑑∣𝑏

(
1

𝑎
+
1

𝑏

)
=

𝑛∑
𝑑=1

𝜇(𝑑)

𝑑

⌊ 𝑛
𝑑
⌋∑

𝓁=⌈√𝑝
𝜆𝑑
⌉−⌊ 𝑛

𝑑
⌋

⌊ 𝑛
𝑑
⌋∑

𝑘=⌈√𝑝
𝜆𝑑
⌉−𝓁

(
1

𝑘
+
1

𝓁

)
(29)

upon setting 𝑎 = 𝓁𝑑 and 𝑏 = 𝑘𝑑. We apply Lemma 3.1 to this inner double sum, with

𝑟 =

⌊
𝑛

𝑑

⌋
, 𝑠 =

⌈√
𝑝

𝜆𝑑

⌉
, 𝑟′ =

𝑛

𝑑
=
𝜆
√
𝑝

𝑑
, and 𝑠′ =

√
𝑝

𝜆𝑑
(30)

(note that 𝑟′ < 𝑠′ < 2𝑟′ since 1
2
< 𝜆2 < 1). Using Lemma 3.2, the double integral in equation (24)

becomes after simplification

∫
𝑛
𝑑√
𝑝

𝜆𝑑
− 𝑛
𝑑
∫

𝑛
𝑑√
𝑝

𝜆𝑑
−𝑦

(
1

𝑥
+
1

𝑦

)
𝑑𝑥 𝑑𝑦 =

2
√
𝑝

𝑑

(
(𝜆−1 − 𝜆) log(𝜆−2 − 1) + 2𝜆 − 𝜆−1

)
(remembering that 𝑛 = 𝜆

√
𝑝). On the other hand, the 𝜖 in equation (24) is at most

∫
𝑟′

𝑠′−𝑟′ ∫
𝑠′−𝑦+5

𝑠′−𝑦

(
1

𝑥
+
1

𝑦

)
𝑑𝑥 𝑑𝑦 + 2

𝑟∑
𝓁=𝑠−𝑟

(
1

𝑠 − 𝓁
+
1

𝓁

)

= ∫
𝑟′

𝑠′−𝑟′

(
log

(
1 +

5

𝑠′ − 𝑦

)
+
5

𝑦

)
𝑑𝑦 + 𝑂

(
𝑟∑

𝓁=𝑠−𝑟

1

𝓁

)

≪ ∫
𝑟′

𝑠′−𝑟′

(
1

𝑠′ − 𝑦
+
1

𝑦

)
𝑑𝑦 + log

(
𝑟

𝑠 − 𝑟

)
≪ log

(
𝑟

𝑠 − 𝑟

)
= log

𝜆2

1 − 𝜆2

by equation (14) and the bound log(1 + 𝑥) ⩽ 𝑥. Substituting these two evaluations back into equa-
tion (29) and multiplying by 𝜆

√
𝑝 gives

𝜆
√
𝑝
∑

(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)

= 𝜆
√
𝑝

𝑛∑
𝑑=1

𝜇(𝑑)

𝑑

(
2
√
𝑝

𝑑

(
(𝜆−1 − 𝜆) log(𝜆−2 − 1) + 2𝜆 − 𝜆−1

)
+ 𝑂

(
log

𝜆2

1 − 𝜆2

))

=
12𝑝

𝜋2

(
(1 − 𝜆2) log(𝜆−2 − 1) + (2𝜆2 − 1)

)
+ 𝑂

(√
𝑝 log 𝑝 ⋅ log

𝜆2

1 − 𝜆2

)
(31)

using equations (13) and (14) and 𝜆 < 1.
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For the second sum on the left-hand side of equation (28), the same procedure yields

∑
(𝑎,𝑏)∈𝑇

1

𝑎𝑏
=

𝑛∑
𝑑=1

𝜇(𝑑)

𝑑2

⌊ 𝑛
𝑑
⌋∑

𝓁=⌈√𝑝
𝜆𝑑
⌉−⌊ 𝑛

𝑑
⌋

⌊ 𝑛
𝑑
⌋∑

𝑘=⌈√𝑝
𝜆𝑑
⌉−𝓁

1

𝑘𝓁
. (32)

Once again we apply Lemma 3.1 using the parameters from equation (30). Using Lemma 3.2, the
double integral in equation (24) becomes after simplification

∫
𝑛
𝑑√
𝑝

𝜆𝑑
− 𝑛
𝑑
∫

𝑛
𝑑√
𝑝

𝜆𝑑
−𝑦

1

𝑥𝑦
𝑑𝑥 𝑑𝑦 = 2Li2(𝜆

2) + log2(𝜆2) −
𝜋2

6
.

On the other hand, the 𝜖 in equation (24) is similarly bounded by

∫
𝑟′

𝑠′−𝑟′ ∫
𝑠′−𝑦+5

𝑠′−𝑦

1

𝑥𝑦
𝑑𝑥 𝑑𝑦 + 2

𝑟∑
𝓁=𝑠−𝑟

1

(𝑠 − 𝓁)𝓁

= ∫
𝑟′

𝑠′−𝑟′

1

𝑦
log

(
1 +

5

𝑠′ − 𝑦

)
𝑑𝑦 +

2

𝑠

𝑟∑
𝓁=𝑠−𝑟

(
1

𝓁
+

1

𝑠 − 𝓁

)

≪ ∫
𝑟′

𝑠′−𝑟′

1

𝑦(𝑠′ − 𝑦)
𝑑𝑦 +

1

𝑠
log
(
𝑟

𝑠 − 𝑟

)
≪
1

𝑠′
log

(
𝑟′

𝑠′ − 𝑟′

)
=

𝑑√
𝑝
log

𝜆2

1 − 𝜆2
.

Substituting these two evaluations back into equation (32) and multiplying by 𝑝 gives

𝑝
∑

(𝑎,𝑏)∈𝑇

1

𝑎𝑏
= 𝑝

𝑛∑
𝑑=1

𝜇(𝑑)

𝑑2

(
2 Li2(𝜆

2) + log2(𝜆2) −
𝜋2

6
+ 𝑂

(
𝑑√
𝑝
log

𝜆2

1 − 𝜆2

))

=
6𝑝

𝜋2

(
2 Li2(𝜆

2) + log2(𝜆2)
)
− 𝑝 + 𝑂

(√
𝑝 log 𝑝 ⋅ log

𝜆2

1 − 𝜆2

)
using equations (13) and (14) and the fact that Li2(𝜆2) is bounded for

1√
2
< 𝜆 < 1.

Finally, subtracting this equation from equation (31) yields

𝜆
√
𝑝
∑

(𝑎,𝑏)∈𝑇

(
1

𝑎
+
1

𝑏

)
− 𝑝

∑
(𝑎,𝑏)∈𝑇

1

𝑎𝑏

=
12𝑝

𝜋2

(
(1 − 𝜆2) log(𝜆−2 − 1) + (2𝜆2 − 1)

)
−
6𝑝

𝜋2

(
2 Li2(𝜆

2) + log2(𝜆2)
)
+ 𝑝 + 𝑂

(√
𝑝 log 𝑝 ⋅ log

𝜆2

1 − 𝜆2

)
=
(
12

𝜋2
𝜆2 − 𝐷(𝜆)

)
𝑝 + 𝑂

(√
𝑝 log 𝑝 ⋅ log

𝜆2

1 − 𝜆2

)
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by the definition (2) of 𝐷(𝜆) in this range. Note that 𝜆2𝑝 = 𝑛2 ⩽ 𝑝 − 1 by assumption, and so
𝑝 ⩾ (1 − 𝜆2)−1 and hence − log(1 − 𝜆2) ⩽ log 𝑝. Consequently, we can replace the error term in
this last estimate with

√
𝑝 log2 𝑝, which concludes the proof of the proposition. □

4 ERROR TERM ESTIMATION

The final goal of this paper is to establish an estimate for the expression (23) that allows it to be
absorbed into the error term in Theorem 1.11. Indeed, since (𝑎, 𝑏) ∈ 𝑇 if and only if (𝑏, 𝑎) ∈ 𝑇, it
suffices to estimate

∑
(𝑎,𝑏)∈𝑇

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
, (33)

which we do in Proposition 4.7. (As mentioned earlier, Theorem 1.11 follows immediately from
combining Propositions 2.6, 3.3, and 4.7.) Intuitively, one expects the average value of the sum-
mand in equation (33) to be close to 0, since the argument of the fractional-part function seems
randomly distributed; this intuition can bemade precise by bounding the discrepancy of the sum-
mand (see Definition 4.3).
In the following discussion, we fix an odd prime 𝑝. We use the standard notations 𝜏(𝑛) for the

number of positive divisors of 𝑛 and 𝜙(𝑛) for the number of integers in [𝑛] that are coprime to 𝑛;
and we recall that 𝑇 was defined in equation (16).

Definition 4.1. For each 𝑏 ∈ [(𝜆−1 − 𝜆)
√
𝑝, 𝜆

√
𝑝] define the following finite sets:

𝐼𝑏 =

{
𝑎 ∈ ℤ∶ (𝑎, 𝑏) ∈ 𝑇

}
=

{
𝑎 ∈

[√
𝑝

𝜆
− 𝑏, 𝜆

√
𝑝

]
∶ gcd(𝑎, 𝑏) = 1

}
,

𝐼+
𝑏
=

{
𝑎 ∈

[√
𝑝

𝜆
− 𝑏,

√
𝑝

𝜆

)
∶ gcd(𝑎, 𝑏) = 1

}
,

𝐼−
𝑏
=

{
𝑎 ∈

(
𝜆
√
𝑝,

√
𝑝

𝜆

)
∶ gcd(𝑎, 𝑏) = 1

}
.

Clearly 𝐼𝑏 = 𝐼+𝑏 ⧵ 𝐼
−
𝑏
, and the fact that 𝑇 = {(𝑎, 𝑏)∶ 𝑏 ∈ [(𝜆−1 − 𝜆)

√
𝑝, 𝜆

√
𝑝], 𝑎 ∈ 𝐼𝑏} follows

directly from the definition (16). The set 𝐼−
𝑏
is contained in an interval whose length is indepen-

dent of 𝑏, and we will estimate the contribution to equation (33) from 𝑎 ∈ 𝐼−
𝑏
using exponential

sums. On the other hand, the set 𝐼+
𝑏
is a complete set of reduced residues modulo 𝑏, allowing the

contribution to equation (33) from 𝑎 ∈ 𝐼+
𝑏
to be estimated using elementary techniques as follows.

The next lemma, which uses a classical Bernoulli polynomial identity, is all we need to estimate
(33) over the interval 𝐼+

𝑏
.

Lemma 4.2. For any real numbers 𝛼 and 𝑦 and any positive integer 𝑏,∑
𝑦⩽𝑎<𝑦+𝑏
gcd(𝑎,𝑏)=1

({
𝛼 −

𝑎

𝑏

}
−
1

2

)
≪ 𝜏(𝑏).
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Proof. Since {𝛼 − 𝑥

𝑏
} is periodic with period 𝑏, it suffices to consider 𝑦 = 1. For all positive inte-

gers 𝑞, we have the identity

𝑞∑
𝑘=1

({
𝛼 −

𝑘

𝑞

}
−
1

2

)
= {𝛼𝑞} −

1

2
(34)

(see, for example, [16, Lemma 2]). Using the property (12) of the Möbius function, we write∑
1⩽𝑎⩽𝑏

gcd(𝑎,𝑏)=1

({
𝛼 −

𝑎

𝑏

}
−
1

2

)
=
∑
1⩽𝑎⩽𝑏

({
𝛼 −

𝑎

𝑏

}
−
1

2

) ∑
𝑑∣gcd(𝑎,𝑏)

𝜇(𝑑)

=
∑
𝑑∣𝑏

𝜇(𝑑)
∑
1⩽𝑎⩽𝑏
𝑑∣𝑎

({
𝛼 −

𝑎

𝑏

}
−
1

2

)

=
∑
𝑑∣𝑏

𝜇(𝑑)

𝑏∕𝑑∑
𝑘=1

({
𝛼 −

𝑘𝑑

𝑏

}
−
1

2

)

=
∑
𝑑∣𝑏

𝜇(𝑑)

({
𝛼𝑏

𝑑

}
−
1

2

)
≪ 𝜏(𝑏)

by equation (34) applied with 𝑞 = 𝑏

𝑑
. □

To estimate the contribution to equation (33) from intervals of the shape 𝐼−
𝑏
, we consider the

discrepancy of the corresponding sequence.

Definition 4.3. Let {𝑢𝑛} be a sequence. For all 0 ⩽ 𝛼 ⩽ 𝛽 ⩽ 1, define

𝑍(𝑁; 𝛼, 𝛽) = #
{
𝑛 ∈ [𝑁]∶ 𝑢𝑛 ∈ [𝛼, 𝛽] (mod 1)

}
.

The discrepancy of the sequence {𝑢𝑛},

𝐷(𝑁) = sup
0⩽𝛼⩽𝛽⩽1

||𝑍(𝑁; 𝛼, 𝛽) − 𝑁(𝛽 − 𝛼)||,
measures the maximum absolute difference between the counting function 𝑍(𝑁; 𝛼, 𝛽) and the
expected number 𝑁(𝛽 − 𝛼).

In the following well-known inequality (see, for example, [17, Corollary 1.1]), we use the stan-
dard notation 𝑒(𝑥) = 𝑒2𝜋𝑖𝑥.

Proposition 4.4 (Erdős–Turán inequality). For any sequence {𝑢𝑛} and any positive integers 𝑁
and 𝐾,

𝐷(𝑁) ⩽
𝑁

𝐾 + 1
+ 3

𝐾∑
𝑡=1

1

𝑡

||||
𝑁∑
𝑛=1

𝑒(𝑡𝑢𝑛)
||||.
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Our application of Proposition 4.4will use an estimate on incomplete Kloosterman sumswhich
ultimately follows fromWeil’s bounds on exponential sums.

Lemma 4.5. Let𝑚 ⩾ 2 be an integer and 𝑦 and 𝑧 real numbers satisfying 0 < 𝑧 − 𝑦 ≪ 𝑚. Then for
any integer 𝑡,

∑
𝑦<𝑛⩽𝑧
(𝑛,𝑚)=1

𝑒

(
𝑡𝑛𝑚
𝑚

)
≪
√
𝑚gcd(𝑡,𝑚) ⋅ 𝜏(𝑚) log𝑚.

Proof. Dartyge and the first author [6, Lemma 1] showed that for arbitrary real numbers 𝑦 < 𝑧,

∑
𝑦<𝑛⩽𝑧
(𝑛,𝑚)=1

𝑒

(
𝑡𝑛𝑚
𝑚

)
=
𝑧 − 𝑦

𝑚
𝜇

(
𝑚

gcd(𝑡,𝑚)

)
𝜙(𝑚)

𝜙(𝑚∕ gcd(𝑡,𝑚))
+ 𝑂

(√
𝑚gcd(𝑡,𝑚) ⋅ 𝜏(𝑚) log𝑚

)
.

(While estimates for incomplete Kloosterman sums have been recorded for decades, this more
recent citation has the desirable properties that a complete proof is included and that the error
term does not contain an 𝑚𝜖 factor.) Using the elementary inequality 𝜙(𝑚𝑛) ⩽ 𝑚𝜙(𝑛), so that
𝜙(𝑐)∕𝜙( 𝑐

𝑑
) ⩽ 𝑑 when 𝑑 ∣ 𝑐, we find that

𝜙(𝑚)

𝜙(𝑚∕ gcd(𝑡,𝑚))
⩽ gcd(𝑡,𝑚) ⩽

√
𝑚gcd(𝑡,𝑚);

therefore the first term can be subsumed into the error term in light of the assumption 𝑧 − 𝑦 ≪
𝑚. □

The below lemma combines the previous two results to give a sufficient estimate of (33) over
𝐼−
𝑏
. For a positive integer 𝑏, we define the counting function of the totients modulo 𝑏,

𝑅𝑏(𝑋) = {𝑎 ∈ [1, 𝑋]∶ gcd(𝑎, 𝑏) = 1}.

Lemma 4.6. Fix a positive integer 𝑏 <
√
𝑝. For any positive real 𝑋, define

𝑍𝑏(𝑋, 𝛼, 𝛽) = #
{
𝑎 ∈ 𝑅𝑏(𝑋)∶

𝑝𝑎𝑏
𝑏
∈ [𝛼, 𝛽] (mod 1)

}
,

𝐷𝑏(𝑋) = sup
0⩽𝛼⩽𝛽⩽1

||𝑍𝑏(𝑋, 𝛼, 𝛽) − (𝛽 − 𝛼)|𝑅𝑏(𝑋)|||.
Then for all real numbers 0 ⩽ 𝑋 ⩽ 𝑏,

𝐷𝑏(𝑋) ≪ 𝜏(𝑏)3∕2𝑝1∕4(log 𝑝)2.

Proof. For each integer 𝑡, Lemma 4.5 gives the estimate

∑
𝑎∈𝑅𝑏(𝑋)

𝑒

(
𝑡𝑝𝑎𝑏
𝑏

)
≪
√
𝑏 gcd(𝑝𝑡, 𝑏) ⋅ 𝜏(𝑏) log 𝑏 ≪

√
𝑏 gcd(𝑡, 𝑏) ⋅ 𝜏(𝑏) log 𝑏
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(since gcd(𝑝, 𝑏) = 1). For any positive integer 𝐾, using the change of variables 𝑡 = 𝑑𝑠,

∑
𝑡⩽𝐾

√
gcd(𝑡, 𝑏)

𝑡
=
∑
𝑑∣𝑏

√
𝑑

∑
𝑡⩽𝐾

gcd(𝑡,𝑏)=𝑑

1

𝑡
⩽
∑
𝑑∣𝑏

√
𝑑
∑
𝑡⩽𝐾
𝑑∣𝑡

1

𝑡
=
∑
𝑑∣𝑏

1√
𝑑

∑
𝑠⩽𝐾∕𝑑

1

𝑠

⩽
∑
𝑑∣𝑏

1√
𝑑

∑
𝑠⩽𝐾

1

𝑠
≪
∑
𝑑∣𝑏

1√
𝑑
log𝐾 ⩽

𝜏(𝑏)∑
𝑑=1

1√
𝑑
log𝐾 ≪

√
𝜏(𝑏) log𝐾.

Applying Proposition 4.4 and using these two estimates, we obtain

𝐷𝑏(𝑋) ⩽
|𝑅𝑏(𝑋)|
𝐾 + 1

+ 3
∑
𝑡⩽𝐾

1

𝑡

||||||
∑

𝑎∈𝑅𝑏(𝑋)

𝑒

(
𝑡𝑝𝑎𝑏
𝑏

)||||||
≪
𝑋

𝐾
+
∑
𝑡⩽𝐾

1

𝑡

√
𝑏 gcd(𝑡, 𝑏) ⋅ 𝜏(𝑏) log 𝑏

≪
𝑏

𝐾
+
(√
𝑏 ⋅
√
𝜏(𝑏) log 𝑏

)
𝜏(𝑏) log𝐾 ≪

𝑏

𝐾
+ 𝜏(𝑏)3∕2𝑝1∕4 log 𝑝 log𝐾,

since 𝑏 <
√
𝑝. Setting 𝐾 = 𝑏 completes the proof of the lemma. □

We remark that Karatsuba [11, 12] gave estimates on equidistribution of fractional parts inmuch
shorter intervals. However, the error terms in those estimates are less advantageous for us, so we
have opted for this more elementary method.
We are now ready to prove Proposition 4.7, which completes the proof of Theorem 1.11.

Proposition 4.7. Let 𝜆 ∈ ( 1√
2
, 1). Then with 𝑇 as defined in equation (16),

∑
(𝑎,𝑏)∈𝑇

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
≪ 𝑝3∕4(log 𝑝)2

3∕2+1.

Proof. We begin by noting that equation (16) and Definition 4.1 imply

∑
(𝑎,𝑏)∈𝑇

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
=

∑
(𝜆−1−𝜆)

√
𝑝⩽𝑏⩽𝜆

√
𝑝

∑
𝑎∈𝐼𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)

=
∑

(𝜆−1−𝜆)
√
𝑝⩽𝑏⩽𝜆

√
𝑝

∑
𝑎∈𝐼+

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
(35)

−
∑

(𝜆−1−𝜆)
√
𝑝⩽𝑏⩽𝜆

√
𝑝

∑
𝑎∈𝐼−

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
.
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Note that {𝑝𝑎𝑏 ∶ 𝑎 ∈ 𝐼+𝑏 } comprises a full set of distinct reduced residues modulo 𝑏. Therefore by
Lemma 4.2,

∑
𝑎∈𝐼+

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
≪ 𝜏(𝑏),

from which it follows that

∑
(𝜆−1−𝜆)

√
𝑝⩽𝑏⩽𝜆

√
𝑝

∑
𝑎∈𝐼+

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
≪

∑
𝑏⩽
√
𝑝

𝜏(𝑏) ≪
√
𝑝 log 𝑝. (36)

Turning to the last double sum in equation (35), we define the function ℎ𝑏 ∶ [0, 1] → ℝ by

ℎ𝑏(𝛼) = #

{
𝑎 ∈ 𝐼−

𝑏
∶

{
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
⩾ 𝛼

}
,

so that

∑
𝑎∈𝐼−

𝑏

{
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
= ∫

1

0

ℎ𝑏(𝛼) 𝑑𝛼. (37)

For all real numbers 𝛽 and 𝛾, if {𝛽} ⩾ {𝛾} then {𝛽 − 𝛾} = {𝛽} − {𝛾}, while if {𝛽} < {𝛾} then {𝛽 − 𝛾} =
{𝛽} − {𝛾} + 1. Consequently, for all integers 𝑏 and real numbers 𝛼 ∈ [0, 1),

{
𝑎 ∈ 𝐼−

𝑏
∶
{
𝛽 −

𝑝𝑎𝑏
𝑏

}
⩾ 𝛼

}
=

{{
𝑎 ∈ 𝐼−

𝑏
∶ {𝛽} < {

𝑝𝑎𝑏
𝑏
} ⩽ {𝛽} + 1 − 𝛼

}
, if {𝛽} ⩽ 𝛼,{

𝑎 ∈ 𝐼−
𝑏
∶ {

𝑝𝑎𝑏
𝑏
} ⩽ {𝛽} − 𝛼 or { 𝑝𝑎𝑏

𝑏
} > {𝛽}

}
, if {𝛽} > 𝛼.

In either case, {𝛽 − 𝑝𝑎𝑏
𝑏
} ⩾ 𝛼 if and only if { 𝑝𝑎𝑏

𝑏
} lies in an interval, or union of intervals, of total

length 1 − 𝛼. It thus follows fromLemma 4.6 that ℎ𝑏(𝛼) − (1 − 𝛼)|𝐼−𝑏 |≪ 𝜏(𝑏)3∕2𝑝1∕4(log 𝑝)2. Sub-
stituting into equation (37), we obtain

∑
𝑎∈𝐼−

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
= ∫

1

0

(
(1 − 𝛼)|𝐼−

𝑏
| + 𝑂(𝜏(𝑏)3∕2𝑝1∕4(log 𝑝)2)) 𝑑𝛼 − ∑

𝑎∈𝐼−
𝑏

1

2

= |𝐼−
𝑏
|∫ 1

0

(1 − 𝛼) 𝑑𝛼 −
1

2
|𝐼−
𝑏
| + 𝑂(𝜏(𝑏)3∕2𝑝1∕4(log 𝑝)2)

≪ 𝜏(𝑏)3∕2𝑝1∕4(log 𝑝)2,

whereupon

∑
(𝜆−1−𝜆)

√
𝑝⩽𝑏⩽𝜆

√
𝑝

∑
𝑎∈𝐼−

𝑏

({
𝜆
√
𝑝

𝑏
−
𝑝𝑎𝑏
𝑏

}
−
1

2

)
≪ 𝑝1∕4(log 𝑝)2

∑
(𝜆−1−𝜆)

√
𝑝⩽𝑏⩽𝜆

√
𝑝

𝜏(𝑏)3∕2
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⩽ 𝑝1∕4(log 𝑝)2
∑
𝑏⩽
√
𝑝

𝜏(𝑏)3∕2

≪ 𝑝1∕4(log 𝑝)2 ⋅
√
𝑝(log 𝑝)2

3∕2−1

from known bounds for sums of powers of 𝜏(𝑏) (see, for example, [18, equation (2.31)]). Inserting
this estimate and the estimate (36) into equation (35) completes the proof of the proposition. □
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