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Abstract. Let ϝ(n) denote a multiplicative function with range {−1, 0, 1},
and let F (x) =

∑�x�
n=1 ϝ(n). Then F (x)/

√
x = a

√
x+ b+E(x), where a and b

are constants and E(x) is an error term that either tends to 0 in the limit or
is expected to oscillate about 0 in a roughly balanced manner. We say F (x)
has persistent bias b (at the scale of

√
x) in the first case, and apparent bias b

in the latter. For example, if ϝ(n) = μ(n), the Möbius function, then F (x) =
∑�x�

n=1 μ(n) has apparent bias 0, while if ϝ(n) = λ(n), the Liouville function,

then F (x) =
∑�x�

n=1 λ(n) has apparent bias 1/ζ(1/2). We study the bias when

ϝ(pk) is independent of the prime p, and call such functions fake μ′s. We

investigate the conditions required for such a function to exhibit a persistent
or apparent bias, determine the functions in this family with maximal and
minimal bias of each type, and characterize the functions with no bias. For
such a function F (x) with apparent bias b, we also show that F (x)/

√
x−a

√
x−b

changes sign infinitely often.

1. Introduction

Let M(x) denote the Mertens function, defined as the sum of the values of the
Möbius function μ(n) over all positive integers n ≤ x,

M(x) =

�x�∑
n=1

μ(n).

This function has a long history in number theory. In 1897 Mertens [14] tabulated
its values up to 104 and ventured that it was “highly probable” that |M(x)| ≤

√
x

for all x ≥ 1. It is well known that a bound of this form would imply the Riemann
hypothesis (RH) and the simplicity of the zeros of the Riemann zeta function (SZ).
In fact, both of these statements would follow if M(x)/

√
x were bounded either

above or below by any fixed constant. In an influential paper of 1942, Ingham [10]
proved that any such bound on M(x)/

√
x would imply significantly more—it would

also follow that there exist infinitely many integer relations among the ordinates
of the zeros of the zeta function in the upper half plane. Mertens’ conjecture
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remained open until Odlyzko and te Riele disproved it in 1985 [22]; see [9, 21] for
more information on oscillations of M(x)/

√
x.

In a similar manner, let L(x) denote the sum of the values of the Liouville
function λ(n) over positive integers n ≤ x,

L(x) =

�x�∑
n=1

λ(n).

Recall that λ(n) = (−1)Ω(n), where Ω(n) counts the number of prime divisors of n,
including multiplicities. In 1919 Pólya [23] computed values of L(x) up to about
x = 1500, and noted that L(x) was never positive over this range, once x ≥ 2. Pólya
remarked that if L(x) never changed sign for sufficiently large x, then the Riemann
hypothesis would follow, as well as the simplicity of the zeros of the zeta function.
Ingham’s work also covered the function L(x), so it was known since then as well
that bounding L(x)/

√
x either above or below would also imply the existence of

integer relations among the nontrivial zeros of the zeta function. Haselgrove proved
that L(x) does change sign infinitely often in 1958 [6], and specific values for sign
changes were found later [4, 11, 25]. Additional information concerning oscillations
in L(x)/

√
x can be found in [7, 18].

It is interesting that M(x) changes sign rather frequently, while L(x) seems
skewed toward negative values. This is evident in the plots of M(x)/

√
x and

L(x)/
√
x shown in Figure 1. A reason for this contrast can be seen by analyz-

ing the Dirichlet series for μ(n) and λ(n),

∑
n≥1

μ(n)

ns
=

1

ζ(s)
and

∑
n≥1

λ(n)

ns
=

ζ(2s)

ζ(s)
.

Assuming RH and SZ, by applying Perron’s formula [27, Lem. 3.12] to these Dirich-
let series one obtains

M(x)√
x

=
∑

ρn=1/2+iγn

|γn|≤T

xiγn

ρnζ ′(ρn)
+ E1(x, T ),(1)

L(x)√
x

=
1

ζ(1/2)
+

∑
ρn=1/2+iγn

|γn|≤T

ζ(2ρn)x
iγn

ρnζ ′(ρn)
+ E2(x, T ),(2)

where E1(x, T ) and E2(x, T ) denote error terms that tend to 0 as T → ∞. If
we model the xiγn as random unit vectors in the complex plane, then we would
expect L(x)/

√
x to oscillate about the constant term 1/ζ(1/2) = −0.68476523 . . . .

This is because the complex-valued summands in (2) need to conspire to overtake
the leading term 1/ζ(1/2). We call such a leading term a bias. This is distinct
from the definition of ‘Chebyshev bias’ in the literature—see, for example, the
seminal paper by Rubinstein and Sarnak [24], and also discussion in [5]. Similarly,
we expect M(x)/

√
x to oscillate about 0, since there is no constant term in (1).

The constant term 1/ζ(1/2) in the expression for L(x) arises from the pole in the
Dirichlet series for the Liouville function lying at s = 1/2; the series for the Möbius
function exhibits no such pole.
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Figure 1. Normalized Mertens function e−u/2M(eu), centered at
0 (top), and Pólya function e−u/2L(eu), centered at 1/ζ(1/2) =
−0.68476 . . . (bottom)

One may also consider the similar function ξ(n) = (−1)ω(n), where ω(n) denotes
the number of distinct prime factors of n. Let Ξ(x) denote its summatory function,

Ξ(x) =

�x�∑
n=1

ξ(n).

This function was recently investigated by the second and third authors [19, 20],
who showed that the corresponding Dirichlet series exhibits no pole at s = 1/2,
so one expects Ξ(x)/

√
x to be unbiased in sign for large x. (This was also shown

implicitly by van de Lune and Dressler [12].) A plot of Ξ(x)/
√
x on a logarithmic

scale appears in Figure 2. The macroscopic shape here arises from the contributions
of poles of the corresponding Dirichlet series on vertical lines with real part σ ≤ 1/4
(assuming RH and SZ), and these contributions dampen as x grows large. Here
and throughout this article, we write s = σ + it with σ and t real.

We consider some families of arithmetic functions similar to μ(n), λ(n), and
ξ(n), and measure an expected bias in their summatory functions by computing
the poles in their Dirichlet series. The functions ϝ(n) we consider are defined by
setting ϝ(1) = 1 and

ϝ(pk) = εk ∈ {−1, 0, 1}

for each k ≥ 1 and each prime p, where εk does not depend on p, and requiring that
ϝ(n) be multiplicative. This family clearly includes μ(n), λ(n), and ξ(n), as well as
other functions commonly studied in number theory, such as μ2(n), the indicator
function for squarefree integers. We refer to this family of functions ϝ(n) as fake
μ’s, since they generalize the Möbius function in particular. (Here, ϝ is the archaic
Greek character digamma.)
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Figure 2. The normalized function e−u/2Ξ(eu) for u ≤ log(1.5 · 1015)

For such a function ϝ(n), we denote its summatory function by

F (x) =

�x�∑
n=1

ϝ(n),

and we wish to investigate whether this function is expected to exhibit a bias at a
particular scale. Unlike M(x), L(x), or Ξ(x), some of the functions in the family we
study have a linear term that we must discount before normalizing. For example,

it is well known that
∑�x�

n=1 μ
2(n) ∼ x/ζ(2), and if we set ϝ(pk) = 1 for all k ≥ 0

then the resulting summatory function is simply
∑�x�

n=1 1 = 	x
. For a particular
choice of ϝ(n), we let a denote the limiting value of F (x)/x as x → ∞, so this is
the residue of the Dirichlet series

∑
n≥1 ϝ(n)/n

s at s = 1 when a pole occurs here.
Then we are interested in the behavior of the normalized summatory function

(3)
F (x)− ax√

x
.

If this expression has a nonzero limit b as x → ∞, then we say F (x) has persistent
bias b. If it is expected to oscillate about a value b in a roughly balanced way for
large x, then we say b is the apparent bias of F (x). In both cases, b is twice the
residue of the corresponding Dirichlet series T (s) at s = 1/2 when a pole occurs
there. The persistent case arises when T (s) has no other poles on the line σ = 1/2
(nor any in a region to the left of this line). For example, if ϝ(pk) = 0 if k is odd
and 1 if k is even, then F (x) = 	√x
 and T (s) = ζ(2s) has a single simple pole
at s = 1/2 with residue 1/2, so F (x) has persistent bias 1. Apparent bias arises
when T (s) has infinitely many simple poles on the line σ = 1/2, assuming RH and
SZ. For example, L(x) has apparent bias 1/ζ(1/2), while M(x) has apparent bias
0. We remark that analysis of oscillations in the apparent bias case likely requires
additional hypotheses beyond RH and SZ: in [13, 21] for instance an assumption

was required regarding the growth in y of
∑

|γ|<y |ζ ′(ρ)|
−2 over the zeros ρ = 1

2 + iγ

of the zeta function on the critical line.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

FAKE MU’S 3233

We remark that when we say a function has no persistent or apparent bias, we
mean this only at the scale of

√
x. A function with no bias at this scale could

well see one at a smaller scale, for example, if its Dirichlet series has a pole on
the real axis at some σ < 1/2. Similarly, a function could exhibit oscillations at a
smaller scale, if its Dirichlet series has poles at complex values σ+ it with σ < 1/2.
This occurs for example when ϝ(n) = μ2(n), which has poles on the line σ = 1/4,
assuming RH. (See [16] for more on oscillations in its summatory function.)

One natural subset of the family of functions we consider here was studied by
Tanaka in 1980 [26]. For a positive integer r let

μr(p
k) =

{
(−1)k, k < r,

0, k ≥ r,

so that μ2(n) = μ(n) and μ∞(n) = λ(n). The Dirichlet series for μr(n) with r ≥ 1
is given by

Tμr
(s) =

⎧⎪⎪⎨
⎪⎪⎩

ζ(2s)ζ(rs)

ζ(s)ζ(2rs)
, r odd,

ζ(2s)

ζ(s)ζ(rs)
, r even.

Each of these functions is analytic in the half-plane σ > 1/2 assuming RH, and the
residue of Tμr

(s) at s = 1/2 is

Res1/2(Tμr
) =

⎧⎪⎪⎨
⎪⎪⎩

ζ(r/2)

2ζ(1/2)ζ(r)
, r ≥ 3 odd,

1

2ζ(1/2)ζ(r/2)
, r ≥ 4 even,

so the apparent bias of the summatory functionMr(x) of μr(n) is br = 2Res1/2(Tμr
).

Tanaka showed that for each r ≥ 2 the function Mr(x)/
√
x− br changes sign infin-

itely often, proving in fact that

(4) lim inf
x→∞

Mr(x)√
x

− br < 0 and lim sup
x→∞

Mr(x)√
x

− br > 0.

We note that each br with r ≥ 3 is negative, and the largest in absolute value occurs
for r = 3, where the apparent bias is more than twice that of L(x):

b3 =
ζ(3/2)

ζ(1/2)ζ(3)
= −1.488169 . . . .

This provides an initial benchmark for our work: do there exist other functions in
our family with an even more pronounced negative bias? More generally, we seek
to answer the following questions.

• What features of ϝ(n) allow us to move from no apparent bias in the sum-
matory function, as with M(x), to an apparent bias, as with L(x)?

• The apparent biases in L(x) and Mr(x) with r ≥ 3 are negative. Do there
exist arithmetic functions in this family with positive apparent bias?

• How large of a bias exists for these functions, whether apparent or persis-
tent, in the positive or negative directions, and what functions ϝ(n) attain
the extremal values?

• Can one characterize the unbiased functions in the families we consider?
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We answer these questions in this article. We first consider the family of functions
ϝ(n) with range {−1, 1}, so where ϝ(pk) = ±1 for each k. This allows interpolating
λ(n) and ξ(n) in particular, and studying how the apparent bias behaves over these
functions. For this case, we prove Theorem 1 in Section 2.

Theorem 1. Suppose ϝ(n) is a multiplicative function satisfying ϝ(pk) = εk ∈
{−1, 1} for each prime p, and let F (x) denote its summatory function. Then

(i) If ε1 = 1, or if ε1 = ε2 = −1, then F (x) has no persistent or apparent bias.
(ii) If ε1 = −1 and ε2 = 1, then assuming RH and SZ, F (x) has apparent bias

b ∈ [A1, B1], where

A1 =
1

ζ(1/2)

∏
p

(
1 +

2

p(
√
p− 1)

)
= −10.29438 . . . ,

B1 =
1

ζ(1/2)

∏
p

(
1− 2

p3/2(
√
p− 1)

)
= 0.16918 . . . ,

and both extreme values are achieved.
(iii) Under RH and SZ, there exist uncountably many functions with apparent

bias 0 having ε1 = −1 and ε2 = 1, and these functions may be characterized
precisely.

We then consider the broader case where ϝ(pk) ∈ {−1, 0, 1} and prove Theorem
2 in Section 3.

Theorem 2. Suppose ϝ(n) is a multiplicative function satisfying ϝ(pk) = εk ∈
{−1, 0, 1} for each prime p, and let F (x) denote its summatory function. Then

(i) If ε1 = 1, or ε1, ε2 ∈ {0,−1}, then F (x) has no persistent or apparent bias.
(ii) If ε1 = −1 and ε2 = 1, then assuming RH and SZ, F (x) has apparent bias

b ∈ [A1, B1] from Theorem 1. Further, the functions with apparent bias 0
in this family may be characterized precisely.

(iii) If ε1 = 0 and ε2 = 1, then F (x) has persistent bias b ∈ [A2, B2], where

A2 =
∏
p

(
1− 1

p3/2
− 2

p2

)
= 0.051524 . . . ,

B2 =
ζ(3/2)

ζ(3)
= 2.17325 . . . ,

and both extreme values are achieved.

We also prove that the normalized summatory functions F (x)/
√
x for the fake

μ’s from part (ii) of Theorems 1 and 2 are infinitely often larger than the value b
as x → ∞, and infinitely often smaller than this value as x → ∞. We establish
this without assuming RH or SZ, so we do not refer to b as the apparent bias in
the following result, which we prove in Section 4 by generalizing the argument of
Tanaka that produced (4) for the functions μr(n).

Theorem 3. Suppose ϝ(n) is a multiplicative function with ϝ(p) = −1, ϝ(p2) = 1,
and ϝ(pk) = εk ∈ {−1, 0, 1} for k ≥ 3, for each prime p. Let T (s) denote its
Dirichlet series and F (x) its summatory function, and let b = 2Res1/2(T ) so that
b ∈ [A1, B1] from Theorem 1. Then

lim inf
x→∞

F (x)√
x

< b and lim sup
x→∞

F (x)√
x

> b.
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Figure 3. Normalized summatory function e−u/2Fmin(e
u) with

u ≤ log(1013), for ϝmin(n) from (5), with minimal apparent bias

The most negatively biased function among the fake μ’s considered here, where
F (x)/

√
x has apparent bias A1 = −10.29 . . . from Theorem 1, is given by evaluating

the Möbius function on the power-free part of the argument:

(5) ϝmin(p
k) =

{
−1, k = 1,

1, otherwise.

The most positively biased function in our study, where F (x)/
√
x has persistent

bias B2 = 2.17 . . . from Theorem 2, arises from a function that indicates whether
its argument n is powerful, that is, when every prime divisor p of n satisfies p2 | n:

(6) ϝMax(p
k) =

{
0, k = 1,

1, otherwise.

Plots of the normalized summatory functions for these two extremal examples are
shown in Figures 3 and 4 for x ≤ 1013, displayed on a logarithmic scale. Plots for
other functions relevant to Theorems 1 and 2 are also displayed later in the article.

We remark that biases and asymptotic behavior of other generalizations of μ(n)
and λ(n) occur in the literature. For example, Humphries, Shekatkar, and Woo
[8] recently studied the summatory function of λ(n; q, a) = (−1)Ω(n;q,a), where
Ω(n; q, a) denotes the number of prime factors p of n (counting multiplicity) which
satisfy p ≡ a mod q. Also, biases exhibited in families of weighted sums, such

as Lα(x) =
∑�x�

n=1 λ(n)/n
α and Mα(x) =

∑�x�
n=1 μ(n)/n

α for varying real α, were
studied in [1, 2, 17, 18].
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Figure 4. Normalized summatory function e−u/2FMax(e
u) with

u ≤ log(1013), for ϝMax(n) from (6), with maximal persistent bias

2. Functions with values in {−1, 1} and the proof of Theorem 1

Suppose ϝ(n) is a multiplicative function with ϝ(pk) = εk ∈ {−1, 1} for every
prime p and each k ≥ 1, with εk independent of p. Clearly ε0 = 1. For σ > 1 write

T (s) =
∑
n≥1

ϝ(n)

ns
.

Suppose first that ε1 = 1. Then we can approximate T (s) with the Riemann
zeta function:

T (s) =
∏
p

(
1 +

1

ps
+ · · ·

)
≈

∏
p

(
1− 1

ps

)−1

= ζ(s).

We thus write T (s) = ζ(s)U(s) and solve for U(s). If ε2 = 1, then

U(s) =
∏
p

(
1 +

1

ps
+

1

p2s
+

ε3
p3s

+ · · ·
)(

1− 1

ps

)
=

∏
p

(
1 +

ε3 − 1

p3s
+ · · ·

)
,

so U(s) is analytic on σ > 1/3, and T (s) has no pole at s = 1/2. In this case T (s)
does have a pole at s = 1, so the expression for F (x)/

√
x from Perron’s formula

will exhibit a linear term ax (with a = U(1)). However this has no effect after our
normalization (3), so such F (x) exhibit no persistent or apparent bias.

If ε2 = −1, then

U(s) =
∏
p

(
1 +

1

ps
− 1

p2s
+ · · ·

)(
1− 1

ps

)
=

∏
p

(
1− 2

p2s
+ · · ·

)

≈
∏
p

(
1− 1

p2s

)2

=
1

ζ(2s)2
.
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Let U1(s) = T (s)ζ(2s)2/ζ(s), so

U1(s) =
∏
p

1− p−s

(1− p−2s)
2

(
1 +

1

ps
− 1

p2s
+

ε3
p3s

+ · · ·
)

=
∏
p

(
1 +

1 + ε3
p3s

+ · · ·
)
,

and so U1(s) converges for σ > 1/3. While T (s) = U1(s)ζ(s)/ζ(2s)
2 in general has

a pole at s = 1 with residue U1(1)/ζ(2)
2, it is analytic at s = 1/2, so again F (x)

exhibits no persistent or apparent bias.
Suppose next that ε1 = ε2 = −1, so this includes the case where ϝ(n) = ξ(n).

Then we approximate T (s) using 1/ζ(s), and write U(s) = T (s)ζ(s), so

U(s) =
∏
p

(
1− 1

p2s
+ · · ·

)
≈ 1

ζ(2s)
.

We thus set U1(s) = U(s)ζ(2s), so

U1(s) = T (s)ζ(s)ζ(2s) =
∏
p

(
1 +

ε3 − 1

p3s
+ · · ·

)
,

which converges on σ > 1/3. Thus T (s) = U1(s)/ζ(s)ζ(2s) has no pole at s = 1/2
(and furthermore a = 0 here as well), so F (x) exhibits no bias b.

We turn then to the remaining case, where ε1 = −1 and ε2 = 1, which includes
the case ϝ(n) = λ(n). We have

T (s) =
∏
p

(
1− 1

ps
+

1

p2s
+ · · ·

)
≈

∏
p

(
1 +

1

ps

)−1

=
ζ(2s)

ζ(s)
,

so we write U(s) = T (s)ζ(s)/ζ(2s), and calculate

U(s) =
∏
p

(
1 +

1 + ε3
p3s

+ · · ·
)
,

so U(s) converges on σ > 1/3. Thus T (s) = U(s)ζ(2s)/ζ(s) has a pole at s = 1/2
with residue U(1/2)/2ζ(1/2), provided U(1/2) = 0, as well as simple zeros on the
σ = 1/2 line under RH and SZ. From Perron’s formula, the constant term for
F (x)/

√
x is U(1/2)/ζ(1/2), and this accounts for the apparent bias of F (x). We

still have freedom in the selection of εk for k ≥ 3, and we can choose these to
manipulate the bias. We have

(7) U(s) =
∏
p

⎛
⎝1 +

∑
k≥3

εk−1 + εk
psk

⎞
⎠ =:

∏
p

Cp(s).

For each prime p, we have

1−
∑
k≥4

2

pk/2
≤ Cp(1/2) ≤ 1 +

∑
k≥3

2

pk/2
,

with the lower bound achieved by selecting εk = −1 for k ≥ 3, and the upper bound
by choosing εk = 1 for k ≥ 3. A straightforward calculation then verifies that the
bias of F (x) lies in the interval [A1, B1] of Theorem 1. We note that the minimal
value A1 = −10.29438 . . . is attained when εk = −1 if and only if k = 1 as in (5),
and the maximal value B1 = 0.16918 . . . is achieved when εk = 1 if and only if
k ∈ {0, 2}.
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It remains to show that there exist uncountably many ϝ(n) with apparent bias
0 having ε1 = −1 and ε2 = 1, and to characterize these functions. For p ≥ 3, we
have

Cp(1/2) ≥ 1− 2

p2(1− p−1/2)
≥ 1− 2

9(1− 3−1/2)
> 0.47,

so U(1/2) ≥ 0 (with U(s) in (7)) if and only if C2(1/2) ≤ 0. Each Cp(s) converges
for σ > 0, so to determine the sign of C2(1/2) it is enough to determine the sign of
the p = 2 factor in the Euler product for T (s) at s = 1/2. Denote this value by γ2.
For k ≥ 3 set δk ∈ {0, 1} so that εk = 1− 2δk. Then we calculate

γ2 = 1− 1

21/2
+

1

2
+

∑
k≥3

1− 2δk
2k/2

= 2

⎛
⎝1−

∑
k≥3

δk
2k/2

⎞
⎠ .

Define two real numbers α and β in [0, 1] by writing their binary expansions using
the values of δk in the following way:

(8) α = (0.δ3δ5δ7 . . .)2, β = (0.δ4δ6δ8 . . .)2.

Then

γ2 = 2

(
1− α√

2
− β

2

)
,

and U(1/2) ≥ 0 precisely when α
√
2 + β ≥ 2. Thus we have zero apparent bias in

this case precisely when α
√
2+β = 2. There are uncountably many ways to choose

the δk to ensure this, arising from the real solutions to α
√
2 + β = 2 with α and β

in [0, 1]. Note that if α or β is a dyadic rational in (0, 1), then it has two relevant
binary expansions, and either one may be used to construct a function with no
apparent bias when α

√
2 + β = 2. This completes the proof of Theorem 1. �

We can describe the functions achieving the extremal values in part (ii) of The-
orem 1. For a positive integer n, write n =

∏
k n(k), where

(9) n(k) =
∏
pk‖n

pk.

Then the minimal apparent bias in this family is attained by the function ϝmin(n) =
μ(n(1)) = λ(n(1)) = ξ(n(1)) as in (5), and the maximal one by

(10) ϝmax(n) = ξ(n/n(2)).

Plots showing the values for the normalized summatory functions for ϝmin(n) and
ϝmax(n) up to 1013 are shown respectively in Figures 3 and 5.

We can also construct an example of a function from part (iii) of Theorem 1

with no apparent bias, by selecting α = 1/
√
2 and β = 1 in (8). That is, we

select the values δ2j+1 for j ≥ 1 according to the binary expansion of 1/
√
2 =

(0.1011010100 . . .)2, and set the values δ2j = 1 for j ≥ 2. We denote this function
by ϝ(1/

√
2,1)(n). A plot showing values up to 1013 for its normalized summatory

function appears in Figure 6.

3. Functions with values in {−1, 0, 1} and the proof of Theorem 2

The proof of Theorem 2 proceeds in the same fashion. The arguments covering
the unbiased cases of Theorem 1 lift directly to the current environment, where
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Figure 5. Normalized summatory function e−u/2Fmax(e
u) with

u ≤ log(1013), for ϝmax(n) from (10), with maximal apparent bias

Figure 6. Normalized summatory function e−u/2F(1/
√
2,1)(e

u)

with u ≤ log(1013), for ϝ(1/
√
2,1)(n) from the end of Section 2,

with ε1 = −1, ε2 = 1, and apparent bias 0

εk = 0 is allowed as well, so we check only the new cases claimed here. First, if
ε1 = 1 and ε2 = 0, then

T (s) =
∏
p

(
1 +

1

ps
+

ε3
p3s

+ · · ·
)

≈ ζ(s)

ζ(2s)
,

so we define U(s) = T (s)ζ(2s)/ζ(s), and we check that U(s) converges for σ >
1/3. Thus T (s) = U(s)ζ(s)/ζ(2s) has no pole at s = 1/2, and the corresponding
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summatory function F (x) is not biased at the
√
x scale. (There is a potential pole

at s = 1, so a = U(1)/ζ(2) in this case.)
Next, suppose ε1 = ε2 = 0. Clearly we are in the unbiased case if εk = 0 for all

k ≥ 3, so we may assume some εk = 0. Let k0 ≥ 3 be the smallest positive such
index. Then

T (s) =
∏
p

(
1 +

εk0

pk0s
+ · · ·

)
≈ ζ(k0s)

εk0 .

Set U(s) = T (s)/ζ(k0s)
εk0 , then U(s) converges on σ > 1/(k0 + 1), so F (x) has no

persistent or apparent bias. Similarly, if ε1 = 0 and ε2 = −1, then

T (s) =
∏
p

(
1− 1

p2s
+ · · ·

)
≈ 1

ζ(2s)
,

and U(s) = T (s)ζ(2s) converges when σ > 1/3, so T (s) is analytic at s = 1/2 (in
fact, T (1/2) = 0), and the corresponding summatory function has no bias of either
type. Last, assume ε1 = −1 and ε2 = 0, which includes the case ϝ(n) = μ(n). Then

T (s) =
∏
p

(
1− 1

ps
+

ε3
p3s

+ · · ·
)

≈ 1

ζ(s)
,

and one may check that U(s) = T (s)ζ(s) converges for σ > 1/3, and T (s) has no
pole at s = 1/2.

If ε1 = −1 and ε2 = 1, then much of the analysis in Section 2 for this case
generalizes easily, and in particular the extremal solutions are not disturbed by the
possibility that some εk = 0. The functions covered by this case include the μr(n)
with r ≥ 3 studied by Tanaka. We can characterize the functions in this family
having apparent bias 0 in a similar way, by determining when the factor with p = 2
in the Euler product for T (s) is 0 at s = 1/2. For k ≥ 3, write εk = δ+k − δ−k , with

δ+k , δ
−
k ∈ {0, 1} and δ+k δ

−
k = 0. Then no apparent bias occurs precisely when

1− 1√
2
+

1

2
+

∑
k≥3

δ+k − δ−k
2k/2

= 0,

that is, when

3

2
− 1√

2
+

1√
2

∑
k≥1

δ+2k+1 − δ−2k+1

2k
+

1

2

∑
k≥1

δ+2k+2 − δ−2k+2

2k
= 0.

Let α+, α−, β+, and β− be real numbers in [0, 1] defined by

α+ = (0.δ+3 δ
+
5 δ

+
7 . . .)2, β+ = (0.δ+4 δ

+
6 δ

+
8 . . .)2,

α− = (0.δ−3 δ
−
5 δ

−
7 . . .)2, β− = (0.δ−4 δ

−
6 δ

−
8 . . .)2,

and let α = α+−α− and β = β+−β−. Then apparent bias 0 in this family occurs
precisely when 2α+

√
2β = 2− 3

√
2.

We turn then to the remaining case, where ε1 = 0 and ε2 = 1. Then

T (s) =
∏
p

(
1 +

1

p2s
+

ε3
p3s

+ · · ·
)

≈ ζ(2s),

so we set U(s) = T (s)/ζ(2s) and verify that it converges for σ > 1/3. We see
that T (s) = U(s)ζ(2s) has a pole at s = 1/2 with residue U(1/2)/2 (provided
U(1/2) = 0), so the constant term in the expression for F (x)/

√
x from Perron’s
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formula is U(1/2). Further, since T (s) is analytic in σ > 1/3 except for the simple
pole at s = 1/2, it follows that F (x)/

√
x → U(1/2) as x → ∞, so F (x) has a

persistent bias. We can select εk with k ≥ 3 to manipulate its value. We compute

U(1/2) =
∏
p

⎛
⎝1 +

∑
k≥3

εk − εk−2

pk/2

⎞
⎠

=
∏
p

⎛
⎝1 +

(
1− 1

p

)⎛
⎝∑

k≥3

εk
pk/2

⎞
⎠− 1

p2

⎞
⎠ =:

∏
p

Qp.

Now for each prime p we have

Qp ≥ 1 +

(
1− 1

p

)⎛
⎝∑

k≥3

−1

pk/2

⎞
⎠− 1

p2
= 1− 1

p3/2
− 2

p2
≥ 1

2
− 1

2
√
2
> 0.14,

and

Qp ≤ 1 +

(
1− 1

p

)⎛
⎝∑

k≥3

1

pk/2

⎞
⎠− 1

p2
= 1 +

1

p3/2
,

so ∏
p

(
1− 1

p3/2
− 2

p2

)
≤ U(1/2) ≤ ζ(3/2)

ζ(3)
.

This completes the proof of Theorem 2. �
We remark that the maximal persistent bias in the proof of Theorem 2 occurs

for the function ϝMax(n) from (6), which is 1 when n has no prime factors with
multiplicity 1 and 0 otherwise, that is, when ϝMax(n) is the indicator function
for the powerful integers. The minimal persistent bias also occurs when ϝ(n) is
supported on the powerful integers: using (9) the extremal function is

(11) ϝMin(n) =

{
ξ(n/n(2)), n(1) = 1,

0, n(1) > 1.

The functions FMax(x)/
√
x and FMin(x)/

√
x for x ≤ 1013 are displayed in Figures 4

and 7 respectively. We remark that from [3] it follows that oscillations in the former
function are Ω(x−2/5).

4. Proof of Theorem 3

Let ϝ(n) be an arithmetic function with the properties in the hypothesis, and let
T (s) denote its Dirichlet series. Then T (s) = U(s)ζ(2s)/ζ(s) with U(s) given by
(7), and the apparent bias of F (x) is b = U(1/2)/ζ(1/2). Let r be a real constant
whose value will be selected later. It follows from Abel’s summation formula that

ζ(2s) = s

∫ ∞

1

	
√
x


xs+1
dx

and

(12) T (s)− (b+ r)ζ(2s) = s

∫ ∞

1

F (x)− (b+ r) 	√x

xs+1

dx

for σ > 1. Suppose that this integrand has constant sign for all sufficiently large x.
Then it follows from Landau’s theorem (see [15, Lem. 15.1]) that this function is
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Figure 7. Normalized summatory function e−u/2FMin(e
u) with

u ≤ log(1013), for ϝMin(n) from (11), with minimal persistent bias

analytic in σ > 1/2, and thus so is T (s), and the Riemann hypothesis follows. Let
ρ1 = 1/2 + iγ1 denote the first zero of the zeta function on the critical line. Using
(12), we have

|T (σ + iγ1)− (b+ r)ζ(2σ + 2iγ1)| < 2 |ρ1| |T (σ)− (b+ r)ζ(2σ)|

for σ > 1/2, so

1

|ρ1|
lim

σ→ 1
2
+

(
σ − 1

2

)
|T (σ + iγ1)− (b+ r)ζ(2σ + 2iγ1)|

≤ 2 lim
σ→ 1

2
+

(
σ − 1

2

)
|T (σ)− (b+ r)ζ(2σ)| .

(13)

Since

lim
σ→ 1

2
+

(
σ − 1

2

)
ζ(2σ) =

1

2
and lim

σ→ 1
2
+
|T (σ)− bζ(2σ)| < ∞,

it follows that

lim
σ→ 1

2
+

(
σ − 1

2

)(
T (σ)− (b+ r)ζ(2σ)

)
=

r

2
.

In addition,

(14) lim
σ→ 1

2
+

(
σ − 1

2

)(
T (σ+iγ1)−(b+r)ζ(2σ+2iγ1)

)
= lim

σ→ 1
2
+

(
σ − 1

2

)
T (σ+iγ1).

Since ρ1 is a simple zero of ζ(s), the limit in (14) is finite. Denote its value by c.
Given that

1

U(s)
=

∏
p

(
1− 1 + ε3

p3s
+ · · ·

)
,
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we have that 1/U(s) is analytic on σ > 1/3, so U(ρ1) = 0 and consequently c = 0.
Then from (13) we have ∣∣∣∣ cρ1

∣∣∣∣ ≤ |r| .

By selecting r = |c/2ρ1| so that |r| < |c/ρ1|, we conclude that each of the functions
F (x) − (b ± r) 	√x
 must change sign infinitely often as x → ∞. The theorem
follows. �

Finally, we remark that Ingham’s observation regarding M(x) and L(x) may
be modified to show that if Fmin(x)/

√
x as in Figure 3 is bounded either above

or below by some constant, then the Riemann hypothesis follows, as well as the
simplicity of the zeros of the Riemann zeta function. This follows by an argument
similar to that employed in the prior proof, using Landau’s theorem. By analogy
with Pólya’s question for the sum of the Liouville function, can one show that
Fmin(x) has infinitely many sign changes? Can one determine a value of x ≥ 42
where Fmin(x) > 0? Owing to the computations used to make Figure 3, any such
x must satisfy x > 1013.
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