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Abstract. For a fixed positive integer �, we consider the function of n that
counts the number of elements of order � in Z∗

n. We show that the average

growth rate of this function is C�(logn)
d(�)−1 for an explicitly given constant

C�, where d(�) is the number of divisors of �. From this we conclude that the
average growth rate of the number of primitive Dirichlet characters modulo n

of order � is (d(�)− 1)C�(logn)
d(�)−2 for � ≥ 2. We also consider the number

of elements of Zn whose �th power equals 0, showing that its average growth
rate is D�(logn)

�−1 for another explicit constant D�. Two techniques for
evaluating sums of multiplicative functions, the Wirsing–Odoni and Selberg–
Delange methods, are illustrated by the proofs of these results.

Let Z∗
n denote the group (under multiplication modulo n) of integers relatively

prime to n, and let � denote a fixed positive integer. Define a�(n) to be the number
of solutions of x� = 1 in Z∗

n. The value of a�(p), when p is prime, ranges over
all divisors of �; however, a�(n) can be much larger than � if n is composite. It
is therefore interesting to ask how the function a�(n) behaves on average over n.
We can ask the same about ã�(n), which we let denote the number of solutions of
x� = 1 in Z∗

n for which xm �= 1 for all 1 ≤ m < �; such an x is said to be of order �
in the group Z∗

n. In other words, a� counts the �th roots of unity modulo n, while
ã� counts the primitive �th roots of unity modulo n.

The following theorem, which is proved in Section 2, gives the average rate of
growth for both functions a� and ã� for every positive integer �. In the statement of
the theorem, we employ the usual notation pj ‖ n to mean that pj | n but pj+1 � n;
we also use d(�) to denote the number of divisors of �.

Theorem 1. For any positive integer � and for any real number ε > 0,

(1)
∑
n<N

a�(n) = C�N(logN)d(�)−1 +O�,ε

(
N(logN)d(�)−2+ε

)

as N → ∞. Furthermore, the same asymptotic formula holds for
∑

n<N ã�(n).
Here, the constant C� is given by the convergent (hence positive) product

(2) C� =
θ(�)

(d(�)− 1)!

∏
p

(
1 +

(�, p− 1)

p− 1

)(
1− 1

p

)d(�)

,
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where θ(�) is defined as follows: if � = 2i�0 with �0 odd, then

(3) θ(�) =

{
1, if i = 0,

(i+ 5)/4, if i ≥ 1

} ∏
pj‖�0

(
1 +

j(�, p− 1)(p− 1)

p(p+ (�, p− 1)− 1)

)
.

Shanks [18, page 62] wrote, “... the whole subject of finite group theory may be
thought of as a generalization of the theory of the roots of unity.” It is consequently
surprising that no asymptotic study of

∑
n<N a�(n) or

∑
n<N ã�(n), for general �,

seems to exist in the literature. Some other relevant asymptotics, involving the
average multiplicative order of elements of Z∗

n as a function of n, were found recently
by Luca and Shparlinksi [7] using different techniques.

Special cases of this result for � = 2, 3, 4 were examined in [3]. The coefficients
C1 = 1 and C2 = 6/π2 are easily recognized, while the coefficients C3 and C4 are
more complicated:

(4) C3 =
11

6π
√
3

∏
p≡1 (mod 3)

(
1− 2

p(p+ 1)

)
= 0.3170565167922841205670156 . . .

and

(5) C4 =
7

2π3

∏
p≡1 (mod 4)

(
1− 4

(p+ 1)2

)
= 0.0954383605842642240056118 . . . .

The expression (4) for C3 is not new but was obtained earlier in [2] and [4]; a
detailed exposition of the high-precision calculation of C3 appears in [4]. We derive
the expressions (4) and (5), as well as a similar expression (12) for C6, in Section 3.

Because the character group of a finite abelian group is isomorphic to the group
itself, the function a�(n) also counts the number of Dirichlet characters χ (mod n)
such that χ� equals the principal character χ0, while ã�(n) counts the number of
Dirichlet characters (mod n) of order �. Therefore Theorem 1 is also a statement
about the number of Dirichlet characters of order � on average.

One might also be interested in studying b�(n), denoting the number of primitive

Dirichlet characters χ (mod n) such that χ� = χ0, and the related function b̃�(n),
denoting the number of primitive Dirichlet characters (mod n) of order �. The
following theorem, also proved in Section 2, gives the average growth rate of these
functions.

Theorem 2. For any integer � ≥ 2 and for any real number ε > 0,

(6)
∑
n<N

b�(n) =
(
d(�)− 1

)
C�N(logN)d(�)−2 +O�,ε

(
N(logN)d(�)−3+ε

)

as N → ∞, where C� is the constant defined in equation (2). Furthermore, the

same asymptotic formula holds for
∑

n<N b̃�(n).

Let Zn denote the ring of integers modulo n. This is not a group under mul-
tiplication; nevertheless we can still define α�(n) to be the number of solutions of
x� = 0 in Zn. Also define α̃�(n) to be the number of solutions of x� = 0 in Zn for
which xm �= 0 for all 1 ≤ m < �. We can establish the average rates of growth of
these functions as well, extending earlier work [4] that addressed the cases � = 2
and � = 3.
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Theorem 3. For any positive integer �,∑
n<N

α�(n) = D�N(logN)�−1 + O�

(
N(logN)�−2

)

as N → ∞. Furthermore, the same asymptotic formula holds for
∑

n<N α̃�(n).
Here, the constant D� is given by the convergent (hence positive) product

(7) D� =
1

�!(�− 1)!

∏
p

(
1 +

�− 1

p

)(
1− 1

p

)�−1

.

The exact values D1 = 1 and D2 = 3/π2 are easy to obtain from the definition;
we compare other values of D� to the values of C� after the proof of the theorem
in Section 4.

Often, asymptotic formulas for sums of multiplicative functions have the form∑
n<N f(n) = NαPm(logN) + O(Nβ), where β < α are constants and Pm is

a polynomial of degree m. This holds, for example, when the Dirichlet series∑∞
n=1 f(n)n

−s has a well-behaved meromorphic continuation in a region includ-
ing a pole of order m+ 1 at s = α. It is reasonable to expect that the summatory
functions considered in Theorems 1–3 have more precise asymptotic formulas of
this shape, with m equal to d(�)− 1, d(�)− 2, and �− 1, respectively; however, we
do not pursue such an elaboration herein.

As it turns out, the proof of Theorem 3 employs the Selberg–Delange method
[20], while the more restrictive Wirsing–Odoni method [19] is sufficient for proving
Theorem 1. In this sense, studying roots of unity is less difficult than studying
roots of nullity. In the next section we describe these two methods precisely in the
context of this paper.

1. Two asymptotic methods

The proofs of our theorems use two different known methods of asymptoti-
cally evaluating sums of nonnegative multiplicative functions f(n). The first, the
“Wirsing–Odoni method”, is elementary (in the technical sense of avoiding complex
analysis) but requires an asymptotic formula for

∑
p<P f(p), as well as a growth

condition on the values f(pr) at prime powers. The second, the “Selberg–Delange
method”, applies in principle to any nonnegative multiplicative function but re-
quires some analytic continuation of the associated Dirichlet series

∑∞
n=1 f(n)n

−s,
a condition that can be difficult to confirm in practice (see [12] for example).

The literature on sums of multiplicative functions is hard to navigate, and there-
fore we have contented ourselves with citing specific results that suffice for our pur-
poses rather than trying to trace every statement back to its earliest appearance.
The first result that we cite was recorded, in essentially the form given below, by
Spearman and Williams [19], using what Odoni [14, 15] called “Halberstam’s refine-
ment of Wirsing’s method” (we remark that this result of Spearman and Williams
was expanded upon by Moree [11]). An alternative approach might employ Moree
and Cazaran’s reinterpretation [12] of the Levin–Fainleib procedure [6].

Proposition 4 (Wirsing–Odoni Method). Let f be a multiplicative function. Sup-
pose that there exist constants u and v such that 0 ≤ f(pr) ≤ urv for all primes
p and all positive integers r. Suppose also that there exist real numbers ξ > 0 and
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0 < β < 1 such that ∑
p<P

f(p) = ξ
P

logP
+O

(
P

(logP )1+β

)

as P → ∞. Then the product over all primes

Cf =
1

Γ(ξ)

∏
p

(
1 +

f(p)

p
+

f(p2)

p2
+

f(p3)

p3
+ · · ·

)(
1− 1

p

)ξ

converges (hence is positive), and∑
n<N

f(n) = CfN(logN)ξ−1 +Of

(
N(logN)ξ−1−β

)
as N → ∞.

This statement differs from [19, Proposition 5.5] in only two respects. First,
their statement has the more restrictive hypothesis that f(n) ≤ 1 for all n; how-
ever, the two prior propositions in their paper, from which they directly derive
Proposition 5.5, allow the weaker hypothesis f(pr) ≤ urv. Second, they give the
value of Cf as

Cf =
e−γξ

Γ(ξ)
lim

P→∞

1

(logP )ξ

∏
p<P

(
1 +

f(p)

p
+

f(p2)

p2
+

f(p3)

p3
+ · · ·

)
.

However, Mertens’ formula (see [8, Theorem 2.7(e)]) tells us that

lim
P→∞

eγ logP
∏
p<P

(
1− 1

p

)
= 1,

which allows us to convert the expression for Cf into

Cf =
1

Γ(ξ)
lim

P→∞

∏
p<P

(
1 +

f(p)

p
+

f(p2)

p2
+

f(p3)

p3
+ · · ·

)(
1− 1

p

)ξ

;

therefore the product on the right-hand side converges, since Cf is known to exist
and be positive. This discussion shows that Proposition 4 does indeed follow from
the work of Spearman and Williams.

The second result that we cite is a variant of the Selberg–Delange method as
described by Tenenbaum [20], which involves factoring out powers of the Riemann
zeta function ζ(s) to cancel a (possibly high-order) pole of a Dirichlet series at
s = 1. We have found it useful (and believe others might as well) to phrase this
result in a seemingly more general way, where we allow the extraction of factors of
the form ζ

(
ρjs − (ρj − 1)

)
rather than just ζ(s). We show in Section 5, however,

that our statement does in fact follow from the form of the Selberg–Delange method
given in [20].

Proposition 5 (Selberg–Delange Method). Let f be a nonnegative multiplica-
tive function and define F (s) =

∑∞
n=1 f(n)n

−s. Let κ be a positive integer and
assume that there exist positive integers ρ1, ρ2, . . . , ρκ and positive real numbers
z1, z2, . . . , zκ such that the Dirichlet series

H(s) = F (s)

( κ∏
j=1

ζ
(
ρjs− (ρj − 1)

)zj)−1

=
∞∑

n=1

h(n)n−s
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converges absolutely on some right half-plane 	(s) > c, where c < 1. Then

Df =
H(1)

Γ(ξ)
∏κ

j=1 ρ
zj
j

=
1

Γ(ξ)
∏κ

j=1 ρ
zj
j

∏
p

(
1 +

h(p)

p
+

h(p2)

p2
+

h(p3)

p3
+ · · ·

)

converges to a positive real number, where ξ =
∑κ

j=1 zj. Furthermore,∑
n<N

f(n) = DfN(logN)ξ−1 +Of

(
N(logN)ξ−2

)
as N → ∞.

2. Proof of Theorem 1

The number a�(n) of solutions of x
� = 1 in Z∗

n is a multiplicative function of n by
the Chinese Remainder Theorem. We start by recording a formula for a�(n) when
n is a prime power. The following lemma contains well-known results in elementary
number theory: for instance, it is a special case of [13, Corollaries 2.42 and 2.44].

Lemma 6. Let � be a positive integer.

(a) Let p be an odd prime, and let j ≥ 0 be the integer such that pj ‖ �. For
any r ≥ 1, we have a�(p

r) = pmin{j,r−1}(�, p− 1).
(b) We always have a�(2) = 1, and if � is odd, then a�(2

r) = 1 for any positive
integer r. If � is even, then let j ≥ 1 be the integer such that 2j ‖ �; in this
case, we have a�(2

r) = 2min{j+1,r−1} for any r ≥ 2.

Armed with this information, we can determine the average value of a� on primes.

Lemma 7. We have
∑

p<P a�(p) = d(�)P/ logP +O�

(
P/(logP )2

)
as P → ∞.

Proof. We use the prime number theorem for arithmetic progressions in the form

#{p < P : p ≡ k (mod �)} =
P

φ(�) logP
+O�

(
P

(logP )2

)

for any k that is relatively prime to �, where φ(�) = #Z∗
� is the Euler phi function;

since � is fixed, this statement follows easily from the classical Siegel–Walfisz the-
orem (see [8, Corollary 11.21]). By Lemma 6, we know that a�(p) = (�, p − 1) =
(�, k − 1) if p ≡ k (mod �); therefore∑

p<P

a�(p) =
∑

1≤k≤�
(k,�)=1

(�, k − 1)
∑
p<P

p≡k (mod �)

1 +O�(1)

=
P

φ(�) logP

∑
1≤k≤�
(k,�)=1

(�, k − 1) +O�

(
P

(logP )2

)
.

The remaining sum is known ([13, problem 4.2.25]; see also [16, page 21]) to equal∑
1≤k≤�
(k,�)=1

(�, k − 1) = φ(�)d(�),

which establishes the lemma. �
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There is another approach to proving the fact that the function a� has d(�) as its
average value on primes, which, while not shorter or simpler, might be illuminating.
The polynomial x� − 1 is the product of d(�) distinct irreducible (over the integers)
polynomials, namely the cyclotomic polynomials Φk(x) for k dividing �. Each
such irreducible factor has one zero on average over primes, by the prime ideal
theorem of Landau (see, for example, [5, page 67, equation (3.3)]); moreover, two
distinct irreducible polynomials have a common root (mod p) for only finitely many
primes p (namely those dividing their resultant). Consequently, x�−1 has d(�) zeros
on average over primes.

Proof of Theorem 1. We apply the Wirsing–Odoni method to the multiplicative
function f(n) = a�(n). Note that Lemma 6 implies that a�(p

r) ≤ �2 for any prime
power pr. Together with Lemma 7, this shows that the hypotheses of Proposition 4
are satisfied with u = �2 and v = 0, and ξ = d(�) and β = 1− ε for any ε > 0. We
conclude from Proposition 4 that∑

n<N

a�(n) = C�N(logN)d(�)−1 +O�,ε

(
N(logN)d(�)−2+ε

)
,

where

(8) C� =
1

Γ(d(�))

∏
p

(
1 +

a�(p)

p
+

a�(p
2)

p2
+ · · ·

)(
1− 1

p

)d(�)

.

By Lemma 6, we see that a�(p
r) = (�, p− 1) for all r ≥ 1 whenever p � �; for such

primes, we have

1 +
a�(p)

p
+

a�(p
2)

p2
+ · · · = 1 + (�, p− 1)

(
1

p
+

1

p2
+ · · ·

)
= 1 +

(�, p− 1)

p− 1
.

Therefore we write equation (8) as

C� =
θ(�)

Γ(d(�))

∏
p

(
1 +

(�, p− 1)

p− 1

)(
1− 1

p

)d(�)

,

where we have set

(9) θ(�) =
∏
p|�

(
1 +

(�, p− 1)

p− 1

)−1(
1 +

a�(p)

p
+

a�(p
2)

p2
+ · · ·

)
.

All that remains is to show that this expression for θ(�) is equal to the defini-
tion (3). For any odd prime p dividing �, let j ≥ 1 be the integer such that pj ‖ �.
Lemma 6(a) tells us that

1 +
a�(p)

p
+

a�(p
2)

p2
+ · · · = 1 +

(
(�, p− 1)

p
+

p(�, p− 1)

p2
+ · · ·+ pj−1(�, p− 1)

pj

)

+

(
pj(�, p− 1)

pj+1
+

pj(�, p− 1)

pj+2
+ · · ·

)

= 1 + (�, p− 1)

(
j

p
+

1

p− 1

)
,

whence

(10)

(
1 +

(�, p− 1)

p− 1

)−1(
1 + (�, p− 1)

(
j

p
+

1

p− 1

))
= 1+

j(�, p− 1)(p− 1)

p(p+ (�, p− 1)− 1)
.
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Similarly, if � is even, then let i ≥ 1 be the integer such that 2i ‖ �. Lemma 6(b)
tells us that

1 +
a�(2)

2
+

a�(2
2)

22
+ · · · = 1 +

(
1

2
+

2

22
+ · · ·+ 2i

2i+1

)
+

(
2i+1

2i+2
+

2i+1

2i+3
+ · · ·

)

= 1 +
i+ 1

2
+ 1,

whence (1 + 1/1)−1(i+ 5)/2 = (i+ 5)/4. Together with equation (10), this shows
that the two expressions (3) and (9) for θ(�) are equivalent.

We have completed the proof of the asymptotic formula (1) for
∑

n<N a�(n), and
we now establish the same asymptotic formula for

∑
n<N ã�(n). Every �th root of

unity modulo n is a primitive kth root of unity modulo n for exactly one integer k
dividing �; therefore for any fixed n,

a�(n) =
∑
k|�

ãk(n).

The Möbius inversion formula [13, Theorem 4.8] thus yields

ã�(n) =
∑
k|�

μ
(
�
k

)
ak(n),

where μ denotes the Möbius μ-function. We conclude that∑
n<N

ã�(n) =
∑
n<N

∑
k|�

μ
(
�
k

)
ak(n) =

∑
n<N

a�(n) +O

(∑
k|�
k<�

∣∣μ(
�
k

)∣∣ ∑
n<N

ak(n)

)

=
∑
n<N

a�(n) +O�

( ∑
k|�
k<�

N(logN)d(k)−1

)
,

by the already established asymptotic formula (1). Since d(k) ≤ d(�) − 1 for any
proper divisor k of �, we see that this last error term has order of magnitude at
most N(logN)d(�)−2, which shows that the asymptotic formula (1) also holds for∑

n<N ã�(n) as asserted. �

Proof of Theorem 2. As mentioned earlier, a�(n) is the number of Dirichlet char-
acters χ (mod n) such that χ� = χ0. Since every Dirichlet character is induced
by exactly one primitive character whose modulus divides n, we see that a�(n) =∑

d|n b�(d). From this identity we can recover all values of b� by the Möbius inver-

sion formula, but for the purposes of this proof we need only note that b�(p
r) =

a�(p
r) − a�(p

r−1) for every prime power pr. An examination of Lemma 6 shows
that 0 ≤ b�(p

r) ≤ �2; furthermore, it follows directly from Lemma 7 that

∑
p<P

b�(p) =
∑
p<P

(
a�(p)−a�(1)

)
=

∑
p<P

a�(p)−π(P ) =
(d(�)− 1)P

logP
+O�

(
P

(logP )2

)
.

Here we use the assumption that � ≥ 2, so that d(�) − 1 > 0: we conclude from
Proposition 4 that∑

n<N

b�(n) = E�N(logN)d(�)−2 +O�,ε

(
N(logN)d(�)−3+ε

)
,
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where

E� =
1

Γ(d(�)− 1)

∏
p

(
1 +

b�(p)

p
+

b�(p
2)

p2
+

b�(p
3)

p3
+ · · ·

)(
1− 1

p

)d(�)−1

.

Note, however, that

(
1+

a�(p)

p
+

a�(p
2)

p2
+

a�(p
3)

p3
+ · · ·

)(
1− 1

p

)
=

(
1+

b�(p)

p
+

b�(p
2)

p2
+

b�(p
3)

p3
+ · · ·

)
;

therefore

E� =
d(�)− 1

Γ(d(�))

∏
p

(
1 +

a�(p)

p
+

a�(p
2)

p2
+

a�(p
3)

p3
+ · · ·

)(
1− 1

p

)d(�)

=
(
d(�)− 1

)
C�

from equation (8). This establishes the first assertion of Theorem 2, and the second
assertion follows from the first exactly as the second assertion of Theorem 1 follows
from its first assertion, in light of the identity b�(n) =

∑
d|n b̃�(d). �

3. Better convergence for certain C�

The infinite product in the definition (2) of C� does not converge very quickly:
assuming the generalized Riemann hypothesis, the truncation of the product at P is
within roughly P−1/2 of the limiting value. In principle, one can extract appropriate
powers of L(1, χ), for χ ranging over the nonprincipal Dirichlet characters (mod �),
to leave a product that converges more quickly. (It is part of the “folklore” that
many Euler products without Dirichlet characters can be expressed as a product
of the form

∏∞
k=2 ζ(k)

ek for integers ek, a form that allows for excellent numerical
approximation; see [9] for one methodical account. Euler products that contain
Dirichlet characters should likewise be expressible as a product of terms of the
form L(k, χ); see [10] for an example.) For most �, the resulting expressions are
quite unwieldy; however, when φ(�) = 2, we can obtain rather tidy forms by using
manipulations that are special to these particular expressions.

We thus assume for the rest of this section that � = 3, 4, or 6, and we let χ0

and χ1 denote the principal and nonprincipal characters (mod �), respectively. We
also, for the sake of exposition, separate infinite products into two parts even when
the products do not individually converge. For example, for the values of � under
consideration, equation (2) can be rewritten as

C� =
θ(�)

(d(�)− 1)!

∏
p|�

(
1 +

(�, p− 1)

p− 1

)(
1− 1

p

)d(�)

× lim
P→∞

∏
p<P

p≡1 (mod �)

(
1+

�

p− 1

)(
1− 1

p

)d(�) ∏
p<P

p≡−1 (mod �)

(
1+

(�, 2)

p− 1

)(
1− 1

p

)d(�)

;
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we abuse notation by writing simply

(11) C� =
θ(�)

(d(�)− 1)!

∏
p|�

(
1 +

(�, p− 1)

p− 1

)(
1− 1

p

)d(�)

×
∏

p≡1 (mod �)

(
1 +

�

p− 1

)(
1− 1

p

)d(�) ∏
p≡−1 (mod �)

(
1 +

(�, 2)

p− 1

)(
1− 1

p

)d(�)

.

The idea is to use an appropriate combination of

L(1, χ1) =
∏

p≡1 (mod �)

(
1− 1

p

)−1 ∏
p≡−1 (mod �)

(
1 +

1

p

)−1

and

L(2, χ0) =
∏

p≡1 (mod �)

(
1− 1

p2

)−1 ∏
p≡−1 (mod �)

(
1− 1

p2

)−1

to completely cancel the last product in equation (11); the resulting product over
primes congruent to 1 (mod �) will turn out to converge more quickly as well. The
exact value of L(1, χ1) can be calculated by classical formulas [8, page 134], as can

the value L(2, χ0) =
π2

6

∏
p|�(1− p−2).

For example, when � = 3, we can rewrite equation (11) (recalling the defini-
tion (3) of θ(�)) as

L(2, χ0)

L(1, χ1)
C3 =

11/9

(2− 1)!

(
1 +

1

3− 1

)(
1− 1

3

)2

×
∏

p≡1 (mod 3)

(
1− 1

p2

)−1(
1− 1

p

)
·
(
1 +

3

p− 1

)(
1− 1

p

)2

×
∏

p≡−1 (mod 3)

(
1− 1

p2

)−1(
1 +

1

p

)
·
(
1 +

1

p− 1

)(
1− 1

p

)2

=
22

27

∏
p≡1 (mod 3)

(
1− 2

p(p+ 1)

)
;

since L(1, χ1) = π/(3
√
3) and L(2, χ0) = 4π2/27, we recover the expression (4) for

C3.
When � = 4, we rewrite equation (11) as

L(2, χ0)
2

L(1, χ1)
C4 =

7/4

(3− 1)!

(
1 +

1

2− 1

)(
1− 1

2

)3

×
∏

p≡1 (mod 4)

(
1− 1

p2

)−2(
1− 1

p

)
·
(
1 +

4

p− 1

)(
1− 1

p

)3

×
∏

p≡−1 (mod 4)

(
1− 1

p2

)−2(
1 +

1

p

)
·
(
1 +

2

p− 1

)(
1− 1

p

)3

=
7

32

∏
p≡1 (mod 4)

(
1− 4

(p+ 1)2

)
;



2738 STEVEN FINCH, GREG MARTIN, AND PASCAL SEBAH

since L(1, χ1) = π/4 and L(2, χ0) = π2/8, we have established the expression (5)
for C4.

Finally, when � = 6, we rewrite equation (11) as

L(2, χ0)
3

L(1, χ1)2
C6 =

2

(4− 1)!

(
1 +

1

2− 1

)(
1− 1

2

)4(
1 +

2

3− 1

)(
1− 1

3

)4

×
∏

p≡1 (mod 6)

(
1− 1

p2

)−3(
1− 1

p

)2

·
(
1 +

6

p− 1

)(
1− 1

p

)4

×
∏

p≡−1 (mod 6)

(
1− 1

p2

)−3(
1 +

1

p

)2

·
(
1 +

2

p− 1

)(
1− 1

p

)4

=
4

243

∏
p≡1 (mod 6)

(
1− 12p− 4

(p+ 1)3

)
;

since L(1, χ1) = π/(2
√
3) and L(2, χ0) = π2/9, we have established the expression

(12) C6 =
1

π4

∏
p≡1 (mod 6)

(
1− 12p− 4

(p+ 1)3

)
= 0.0075925601722787610308508 . . . .

Notice that the expressions (4), (5), and (12) involve infinite products whose
factors are of the form 1+O(p−2). Consequently, each of these expressions converges
more quickly than the original formula (2): their truncations at P will be within a
factor of roughly (P logP )−1 of their limiting values.

4. Proof of Theorem 3

We use the Selberg–Delange method to address the average growth rate of the
number of roots of nullity (mod n). The key observation is that the Dirichlet series
corresponding to α�(n) can be factored into a product of copies of the Riemann
zeta function, multiplied by a Dirichlet series with a half-plane of convergence that
includes the point s = 1.

Proof of Theorem 3. The number α�(n) of solutions of x� = 0 in Zn is again a
multiplicative function of n by the Chinese Remainder Theorem. It is easy to see
that α�(p

r) = p�(�−1)r/�	 for any prime power pr; put another way, if r = j�, then
α�(p

r) = pj(�−1), while if r = j� + i with 1 ≤ i ≤ �− 1, then α�(p
r) = pj(�−1)+i−1.

Therefore

∞∑
n=1

α�(n)

ns
=

∏
p

( ∞∑
r=0

α�(p
r)

prs

)
=

∏
p

( ∞∑
j=0

�−1∑
i=0

α�(p
j�+i)

p(j�+i)s

)

=
∏
p

(
1 +

�−1∑
i=1

pi−1

pis

) ∞∑
j=0

(
p�−1

p�s

)j

=
∏
p

(
1 +

1

ps
+

1

p2s−1
+ · · ·+ 1

p(�−1)s−(�−2)

)(
1− 1

p�s−(�−1)

)−1

.
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Define

(13) H�(s) =
∏
p

(
1 +

1

ps
+

1

p2s−1
+ · · ·+ 1

p(�−1)s−(�−2)

)

×
(
1− 1

ps

)(
1− 1

p2s−1

)
· · ·

(
1− 1

p(�−1)s−(�−2)

)
,

so that
∞∑

n=1

α�(n)

ns
= ζ(s)ζ(2s− 1) · · · ζ

(
�s− (�− 1)

)
H�(s).

Notice that when each factor in the Euler product (13) defining H�(s) is expanded,
every uncancelled term other than 1 is bounded by 1/p2(�−1)σ−2(�−2) when σ =
	(s) ≤ 1. Since the exponent 2(�−1)σ−2(�−2) exceeds 1 for σ > (2�−3)/(2�−2),
we conclude that the Euler product (13) converges uniformly on any compact subset
of the half-plane 	(s) > (2�−3)/(2�−2), as will the corresponding Dirichlet series.
Therefore the Selberg–Delange method can be applied: we take κ = �, ρj = j,
zj = 1, and any c > (2�− 3)/(2�− 2) in Proposition 5, obtaining∑

n<N

α�(n) = D�N(logN)�−1 + O�

(
N(logN)�−2

)
with

D� =
H�(1)

Γ(�)
∏�

j=1 j
=

1

(�− 1)!�!

∏
p

(
1 +

�− 1

p

)(
1− 1

p

)�−1

,

which establishes the first assertion of the theorem.
When � = 1, we trivially have α̃1(n) = α1(n) for all positive integers n, so

the second assertion of the theorem is equivalent to the first assertion in that
case; we therefore assume � ≥ 2. Since α̃�(n) counts the number of solutions
to x� ≡ 0 (mod n) that are not solutions to x�−1 ≡ 0 (mod n), we have α̃�(n) =
α�(n)− α�−1(n); this implies that∑

n<N

α̃�(n) =
∑
n<N

α�(n)−
∑
n<N

α�−1(n) =
∑
n<N

α�(n) +O�

(
N(logN)�−2

)
by an application of the first assertion of the theorem at �− 1. This establishes the
second assertion of the theorem. �

We remark that the function∏
p

(
1 +

1

ps
+

1

p2s−1

)
=

1

ζ(3s− 2)

∞∑
n=1

α3(n)

ns
= ζ(s)ζ(2s− 1)H3(s),

in the notation of the above proof, appears also in [17] and [1], where the difficulty
of determining the natural boundary of its meromorphic continuation is noted.

Notice that the definition (7) of D� is a reasonably quickly converging infinite
product: the general factor is a polynomial in 1/p with no linear term, and so the
product has the form

∏
p(1 +O(p−2)). For example,

D3 =
1

12

∏
p

(
1− 3p− 2

p3

)
and D4 =

1

144

∏
p

(
1− 6p2 − 8p+ 3

p4

)
.
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While these expressions are already serviceable for numerical calculations, we wish
to record an interesting parallel with the constants C� defined in equation (2).
Notice that (

1 +
�− 1

p

)(
1− 1

p

)�−1

=

(
1 +

�

p− 1

)(
1− 1

p

)�

,

which means that the general factor in the definition of D� is the same as the factor
in the definition of C� corresponding to primes p ≡ 1 (mod �). For example, if we
take � to be 3, 4, or 6 and extract appropriate powers of ζ(s)−1 from D�, we see
that

D3 =
1

2π2

∏
p

(
1− 2

p(p+ 1)

)
,

D4 =
1

4π4

∏
p

(
1− 4

(p+ 1)2

)
,

D6 =
1

400π6

∏
p

(
1− 12p− 4

(p+ 1)3

)
;

these expressions can be compared with the expressions (4), (5), and (12) for the
respective C�.

5. Verification of Selberg–Delange

The following proposition is a consequence of the Selberg–Delange method that
is even more general than Proposition 5, in that we do not require the coefficients
fn to be multiplicative in n.

Proposition 8. Let F (s) =
∑∞

n=1 fnn
−s and H(s) =

∑∞
n=1 hnn

−s be Dirichlet
series, with fn ≥ 0. Suppose that there exists a positive integer κ, positive integers
ρ1, . . . , ρκ, and positive real numbers z1, . . . , zκ such that

F (s) = H(s)

κ∏
j=1

ζ
(
ρjs− (ρj − 1)

)zj
on some right half-plane. Suppose also that

∑∞
n=1 |hn|n−σ0 converges for some real

number σ0 < 1. Then

Df =
H(1)

Γ(ξ)
∏κ

j=1 ρ
zj
j

=

∑∞
n=1 hn/n

Γ(ξ)
∏κ

j=1 ρ
zj
j

is convergent, where ξ =
∑κ

j=1 zj. Furthermore,∑
n<N

fn = DfN(logN)ξ−1 +Of

(
N(logN)ξ−2

)
as N → ∞.

We could allow the exponents zj to be arbitrary complex numbers and still be
able to derive the above proposition from the Selberg–Delange method in [20], but
at the cost of more technical details. (We note that our proof below goes through
if all of the zj have positive real parts.) In fact, we could even allow the coefficients
of fn to be arbitrary complex numbers. We have chosen only to mention these
extensions, since the resulting proof would have to be much longer and because
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the given statement is sufficient for our purposes. The restriction that the ρj be
positive integers is more fundamental, however, since we need the resulting factor
H(s) to be representable as a Dirichlet series.

Proof of Proposition 8. In this proof, we say that a statement involving the complex
number s holds “on a suitable half-plane” if there exists a real number σ0 < 1 such
that the statement holds whenever 	s > σ0. For example, the last hypothesis of
the lemma is equivalent [20, page 108, Theorem 3] to saying that the Dirichlet series
H(s) =

∑∞
n=1 hnn

−s converges absolutely on a suitable half-plane. For notational
convenience we also set R = max{ρ1, . . . , ρκ}. We also use the notation 	s = σ
and �s = τ , so that s = σ + iτ , and log+(y) = max{0, log y}.

Set

(14) G(s) = F (s)ζ(s)−ξ = H(s)

∏κ
j=1 ζ

(
ρjs− (ρj − 1)

)zj
ζ(s)ξ

,

where ξ =
∑κ

j=1 zj . Notice that a quotient ζ
(
ρjs− (ρj − 1)

)
/ζ(s) has a removable

singularity at s = 1, and its value there is 1/ρj . Therefore the fraction on the
right-hand side of equation (14) has a removable singularity at s = 1, and its value

there is
∏κ

j=1 ρ
−zj
j . The zeta function has no zeros [20, page 157, Theorem 15] in

a region of the shape

(15) σ ≥ 1− c

1 + log+ |τ |
,

and hence the function G(s) is holomorphic in the same region (as long as c is
chosen small enough that 1−c ≥ σ, so that H(s) is defined throughout the region).

Now H(s) is bounded in a suitable half-plane (by the constant
∑∞

n=1 |hn|n−σ0).
In the region (15), we also have the bound 1/ζ(s) � log |τ | for |τ | ≥ 3 [20, page 158,
Theorem 16]. Finally, for any positive number δ, the zeta function satisfies the
bound ζ(s) �δ |τ |δ for σ ≥ 1 − δ and |τ | ≥ 1 [20, page 146, Theorem 7]. Conse-
quently, choosing δ = 1

2ξ , we have the bound

ζ
(
ρjs− (ρj − 1)

)
�ξ |ρjτ |1/(2ξ) �ξ,R |τ |1/(2ξ)

for ρjσ− (ρj − 1) ≥ 1− 1
2ξ , which is the same as σ ≥ 1− 1

2ξρj
and hence is implied

by σ ≥ 1− 1
2ξR . We conclude that

G(s) �ξ,R,H (log |τ |)κ
κ∏

j=1

|τ |zj/(2ξ) �κ,ξ,R,H (1 + |τ |)3/4,

say, in the region (15) (as long as c is chosen smaller than 1
2ξR ). Note that the

implicit constant depends simply upon the sequence f (the parameters κ, ξ, and R
and the function H being determined by F ). Note also that our derivation of the
upper bound G(s) �f (1 + |τ |)3/4 assumed that |τ | ≥ 3, but the inequality surely
holds for the compact subset |τ | ≤ 3 of the region (15) as well.

We have thus shown, in the notation of [20, pages 184–185], that the function
F (s) has the property P(ξ; c0,

1
4 ,M) for some constants c0 and M depending on f .

Since the coefficients fn are nonnegative, the function F (s) automatically has the
property T (ξ, ξ; c0,

1
4 ,M) as well. Applying the Selberg–Delange method as given
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in [20, page 185, Theorem 3] with N = 0, we conclude that∑
n<N

fn = N(logN)ξ−1

(
λ0(ξ) +Of

(
1

logN

))
,

where by [20, page 185, equation (15)],

λ0(ξ) =
1

Γ(ξ)
G(1)γ0(ξ) =

1

Γ(ξ)

H(1)∏κ
j=1 ρ

zj
j

1 = Df

as desired. (The fact that γ0(ξ) = 1 follows from [20, page 182, Theorem 1] in
combination with the last line of the prior page.) �
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