Putnam Practice Problems #1 September 19, 2017 (in no particular order)

- (1) Eighteen dominoes are placed on a 6×6 checkerboard so that each domino covers two adjacent squares and every square is covered by a domino. Prove that regardless of how the dominoes are placed, the checkerboard can be cut along one of its horizontal or vertical lines in such a way that no domino is cut.
- (2) Suppose that g is a function on the positive integers that takes positive integral values, that satisfies g(g(n)) + 2g(n) = 3n + 4 for all positive integers n. Find, with proof, g(2017).
- (3) Let h(t) be a continuous function, defined for all real numbers t, that is periodic with period 2017 (that is, h(t + 2017) = h(t) for all real numbers t). Show that there exists a real number x such that h(x + 1) = h(x).
- (4) Let $A = \{a_1, a_2, a_3, a_4\}$ be a set of four distinct positive integers, and let $s_A = a_1 + a_2 + a_3 + a_4$. Let n_A denote the number of pairs (i, j) with $1 \le i < j \le 4$ such that $a_i + a_j$ divides s_A . Find the largest possible value of n_A , and find all sets A for which n_A equals this largest possible value.
- (5) Given real numbers v₀, v₁,..., v_n, define E(v₀, v₁,..., v_n) to be the value p(n + 1) where p(x) is the unique polynomial of degree at most n such that p(0) = v₀, p(1) = v₁, ..., and p(n) = v_n. Define a sequence {y_n} of real numbers recursively by y₀ = 1 and y_{n+1} = E(y₀, y₁,..., y_n) + 1 for n ≥ 0. Find and prove a formula for y_n.
- (6) Let f(x) = x − ⌊x⌋ denote the fractional part function. For example, f(12.345) = 0.345 and f(π) = π − 3 and f(9876) = 0. Find all pairs of positive integers m and n for which f(√m) = f(√n).
- (7) Let T be a triangle with the following property: if T' is any triangle with the same perimeter and area as T, then T' is actually congruent to T. Show that T is equilateral.
- (8) For each integer $n \ge 2$, define

$$x_n = \frac{(n^{2017} + 1^{2016})(n^{2017} + 2^{2016})\cdots(n^{2017} + (n-1)^{2016})(n^{2017} + n^{2016})}{(n^{2017} - 1^{2016})(n^{2017} - 2^{2016})\cdots(n^{2017} - (n-1)^{2016})(n^{2017} - n^{2016})}$$

Calculate, with proof, $\lim_{n\to\infty} x_n$.