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Diophantine m-tuples

Definition
A Diophantine m-tuple is a set of m positive integers

{a1, a2, . . . , am}

such that
aiaj + 1 is a perfect square

for all i 6= j.

Example (Fermat)
{1, 3, 8, 120} is a Diophantine quadruple, since

1 · 3 + 1 = 22 1 · 8 + 1 = 32 1 · 120 + 1 = 112

3 · 8 + 1 = 52 3 · 120 + 1 = 192 8 · 120 + 1 = 312.

Diophantine quadruples Greg Martin
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Qualitative results

In terms of existence of Diophatine m-tuples, we know that
there are:

infinitely many Diophantine pairs (for example, {1, n2 − 1});
infinitely many Diophantine triples and quadruples (known
to Euler);
finitely many Diophantine 5-tuples (Dujella), although it is
expected that there are none;
no Diophantine 6-tuples (Dujella), hence no Diophantine
7-tuples, 8-tuples, etc.

For the cases m = 2, 3, 4, we should therefore try to count the
number of Diophantine m-tuples below some given bound N.
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Quantitative results

Let Dm(N) be the number of Diophantine m-tuples contained in
{1, . . . ,N}. Dujella (Ramanujan J., 2008) obtained:

an asymptotic formula for D2(N);
an asymptotic formula for D3(N);
upper and lower bounds for D4(N) of the same order of
magnitude.

Our contribution
We develop a method to obtain an asymptotic formula for
D4(N). (Arguably, the method is even more interesting than the
asymptotic formula.)

We first summarize the arguments for pairs and triples, which
we will use as a starting point for studying quadruples.
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Counting Diophantine pairs

If {a, b} is a Diophantine pair, there exists an integer r such that
ab + 1 = r2, which implies that

r2 ≡ 1 (mod b).

Conversely, any solution of this congruence with 1 < r ≤ b
gives a Diophantine pair ( r2−1

b , b). (Note: r = 1 is excluded
since it yields a = 0.)

Using this bijection

D2(N) = number of Diophantine pairs in {1, . . . ,N}

=
∑
b≤N

#{1 < r ≤ b : r2 ≡ 1 (mod b)}

=
6
π2 N log N + O(N).

Diophantine quadruples Greg Martin
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Regular Diophantine triples

Lemma
If {a, b} is a Diophantine pair, then

{a, b, a + b + 2r}

is a Diophantine triple, where ab + 1 = r2.

Proof.
Simply verify that a(a + b + 2r) + 1 = (a + r)2 and
b(a + b + 2r) + 1 = (b + r)2.

Not all Diophantine triples arise in this way, but those that do
are called regular. Those that do not are called irregular.

Diophantine quadruples Greg Martin
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Counting Diophantine triples

By elementary but complicated reasoning, Dujella showed
that there are at most cN irregular Diophantine triples in
{1, . . . ,N} (for some constant c).
Using the bijection between Diophantine pairs {a, b} and
pairs {b, r} where r2 ≡ 1 (mod b), a similar counting
argument establishes an asymptotic formula for the
number of regular Diophantine triples in {1, . . . ,N}.

Theorem (Dujella)

D3(N) = number of Diophantine triples in {1, . . . ,N}

=
3
π2 N log N + O(N).
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Regular Diophantine quadruples

Lemma (Arkin, Hoggatt, and Strauss, 1979)
If {a, b, c} is a Diophantine triple, then

{a, b, c, a + b + c + 2abc + 2rst}

is a Diophantine quadruple, where

ab + 1 = r2, ac + 1 = s2, and bc + 1 = t2.

Not all Diophantine quadruples arise in this way, but those that
do are called regular.
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Doubly regular Diophantine quadruples

What happens if we start with a Diophantine pair {a, b} (with
ab + 1 = r2), then form the regular Diophantine triple
{a, b, a + b + 2r}, then use the lemma on the previous slide to
form a Diophantine quadruple?

Lemma (known to Euler)
If {a, b} is a Diophantine pair, then

{a, b, a + b + 2r, 4r(a + r)(b + r)}

is a Diophantine quadruple, where ab + 1 = r2.

Diophantine quadruples that arise in this way are called doubly
regular.

Diophantine quadruples Greg Martin
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Counting Diophantine quadruples

It turns out that the main contribution to D4(N) comes from
doubly regular quadruples: the number of non-doubly-regular
Diophantine quadruples in {1, . . . ,N} is O(N1/3).

However, Dujella was not able to get a precise asymptotic
formula for (doubly regular) Diophantine quadruples. Instead he
got upper and lower bounds of the same order of magnitude:

Theorem (Dujella)
If D4(N) is the number of Diophantine quadruples in {1, . . . ,N},
then

0.1608 · N1/3 log N < D4(N) < 0.5354 · N1/3 log N

when N is sufficiently large.
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Counting Diophantine Quadruples

Doubly regular Diophantine quadruples
{a, b, a + b + 2r, 4r(a + r)(b + r)}, where ab + 1 = r2

As before, for each b we find all the solutions 1 < r ≤ b to
r2 ≡ 1 (mod b); each solution determines a = r2−1

b .
The obstacle to counting Diophantine quadruples in
{1, . . . ,N}: when b is around N1/3 in size (the most
important range), whether or not 4r(a + r)(b + r) is less
than N depends very much on how big r is relative to b.

Our idea:
Pretend that every such r is a random number between 1
and b, and calculate what the asymptotic formula would be.
Use the theory of equidistribution to prove that, on
average, the solutions r really do behave randomly.

Diophantine quadruples Greg Martin
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Equidistribution

Notation
Given a sequence {u1, u2, . . .} of real numbers between 0 and
1, define

S(N;α, β) = #{i ≤ N : α ≤ ui ≤ β}.

Definition
We say that the sequence is equidistributed (modulo 1) if

lim
N→∞

S(N;α, β)
N

= β − α

for all 0 ≤ α ≤ β ≤ 1.

In other words, every fixed interval [α, β] in [0, 1] gets its fair
share of the ui.

Diophantine quadruples Greg Martin
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share of the ui.
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Weyl’s criterion

Theorem (Weyl)
The sequence {u1, u2, . . . } is equidistributed if and only if

lim
N→∞

1
N

N∑
n=1

e2πikun = 0

for every integer k ≥ 1.

Intuitively, if the sequence is equidistributed, we would
expect enough cancellation in the sum to make the limit
tend to 0.

Weyl’s criterion can be made quantitative, and the result is
known as the Erdős–Turán inequality:

Diophantine quadruples Greg Martin



Introduction Equidistribution Reducible Quadratics Final Calculation

Weyl’s criterion

Theorem (Weyl)
The sequence {u1, u2, . . . } is equidistributed if and only if

lim
N→∞

1
N

N∑
n=1

e2πikun = 0

for every integer k ≥ 1.

Intuitively, if the sequence is equidistributed, we would
expect enough cancellation in the sum to make the limit
tend to 0.

Weyl’s criterion can be made quantitative, and the result is
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The Erdős–Turán inequality

Definition
The discrepancy of the sequence {u1, u2, . . . } is

D(N;α, β) = S(N;α, β)− N(β − α),

where S(N;α, β) = #{i ≤ N : α ≤ ui ≤ β}.

Theorem (Erdős–Turán)
For any positive integers N and K,

|D(N;α, β)| ≤ N
K + 1

+ 2
K∑

k=1

C(K, k)

∣∣∣∣∣
N∑

n=1

e2πikun

∣∣∣∣∣ ,
where C(K, k) = 1

K+1 + min
(
β − α, 1

πk

)
.
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What if the target interval moves?

Let α = {α1, α2, . . . } and β = {β1, β2, . . . } be the endpoints of a
sequence of intervals [αi, βi].

Notation, version 2.0
Define the counting function

S(N; α,β) = #{i ≤ N : αi ≤ ui ≤ βi}.

and the discrepancy

D(N; α,β) = S(N;α, β)−
N∑

n=1

(βn − αn).

An existing proof of the original Erdős–Turán inequality can be
adapted to account for these moving target intervals [αi, βi]:
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Erdős–Turán with a moving target

Theorem (M.–Sitar, 2010)
For any N and K, the discrepancy is bounded by

|D(N; α,β)| ≤ N
K + 1

+
K∑

k=1

C(K, k) max
1≤T≤N

∣∣∣∣∣
T∑

n=1

e2πikun

∣∣∣∣∣
×
(

1 +
N−1∑
n=1

|αn+1 − αn|+
N−1∑
n=1

|βn+1 − βn|
)
,

where C(K, k) = 2−16/7π
K+1 + 16/7π

k .

Some dependence on α and β is necessary: the target
intervals [αi, βi] could be correlated with the sequence {ui}
being counted.
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Normalized roots of polynomial congruences

What sequence of real numbers do we want to examine the
equidistribution of?

Definition
Given a polynomial f (t) ∈ Z[t], we form the sequence⋃

m≥1

{ r
m : 0 ≤ r < m, f (r) ≡ 0 (mod m)

}
.

Example
If f (t) = t2− 19, then the corresponding sequence of normalized
roots is {1

2 ,
1
3 ,

2
3 ,

2
5 ,

3
5 ,

1
6 ,

5
6 ,

1
9 ,

8
9 ,

3
10 ,

7
10 ,

2
15 ,

7
15 ,

8
15 ,

13
15 , . . . }.
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Hooley’s result

Theorem (Hooley, 1964)
If f (t) ∈ Z[t] is irreducible, then the sequence⋃

m≥1

{ r
m : 0 ≤ r < m, f (r) ≡ 0 (mod m)

}
is equidistributed. In

fact, if f has degree d, then∑
m≤x

∑
0≤r<m

f (r)≡0 (mod m)

e2πikr/m � x

(log x)
√

d/d!

for any nonzero integer k. (The number of summands is � x.)

For our application to Diophantine quadruples, we are
interested in f (t) = t2 − 1, which is reducible. We therefore
need to modify Hooley’s argument to show equidistribution of
the corresponding sequence of normalized roots.
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How much do we need to change?

Definition
ρ(m) is the number of solutions to f (x) ≡ 0 (mod m).

Hooley’s argument has two main parts:
Using combinatorial arguments (dividing integers
according to whether they are divisible by large or small
primes, for example) to isolate the essential inequalities
needed bound the exponential sum
We can use these arguments verbatim.
Incorporating information about ρ to produce nontrivial
upper bounds in those inequalities
For f (t) = t2 − 1, the function ρ behaves quite differently;
on the other hand, we can calculate it explicitly.
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What we need to know about ρ

Let d be the degree of f , and let ∆ be the discriminant of f .
Hooley notes that ρ(m) has the following four properties:

ρ is multiplicative (Chinese remainder theorem)
if p - ∆, then ρ(p) = ρ(pα) ≤ d for every α ≥ 1 (Hensel’s
lemma)
ρ(pα) is bounded uniformly in terms of ∆
ρ(m)�f dω(m), where ω(m) is the number of distinct prime
factors of m

For f (t) = t2 − 1, these properties are all readily verified as well.
In fact, for any reducible quadratic f (not the square of a linear
polynomial), we have ρ(m) ≤

√
∆ · 2ω(m).
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One key sum

Definition
ρ(m) is the number of solutions to f (x) ≡ 0 (mod m).

Hooley’s method also requires an estimate for
∑

`≤x

√
ρ(`) `

φ(`) .

Rule of thumb
If f is a nice multiplicative function such that f (p) is β on
average, then

∑
`≤x f (`) ∼ c(f )x(log x)β−1.

Since
√
ρ(p) p

φ(p) =
√

2 p
p−1 for all but finitely many primes p

when f is a reducible quadratic, we can take β =
√

2.
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Our modification of Hooley’s result

Theorem (M.–Sitar, 2010)
If f (t) ∈ Z[t] is a reducible quadratic (not a square), then the
sequence

⋃
m≥1

{ r
m : 0 ≤ r < m, f (r) ≡ 0 (mod m)

}
is

equidistributed. In fact,∑
m≤x

∑
0≤r<m

f (r)≡0 (mod m)

e2πikr/m �f ,k x(log x)
√

2−1(log log x)5/2

for any nonzero integer k. (The number of summands is
� x log x.)

Remark
We expect that the true order of magnitude of the exponential
sum is � x, due to the two roots of f that are present for most
moduli (r = 1 and r = −1, in the case of f (t) = t2 − 1).
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The inequality constraining r

For each b, we were trying to count the number of solutions to
r2 ≡ 1 (mod b) which gave rise to a’s such that

4r(a + r)(b + r) ≤ N.

Since a = r2−1
b ≈ r2

b , this inequality is essentially equivalent to

4 r
b

(
( r

b)2 + r
b

)(
1 + r

b

)
≤ N

b3 ,

which is equivalent to

r
b ≤ min

{
1, 1

2

(√
2N1/2

b3/2 + 1− 1
)}
.
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If the r were random. . .

We’ve determined that the number of doubly regular
Diophantine quadruples is essentially∑

b

#
{

r ≤ b : r2 ≡ 1 (mod b), r
b ≤ min

{
1, 1

2

(√
2N1/2

b3/2 + 1− 1
)}}

.

If the solutions r were randomly distributed between 1 and b,
then this sum would equal

∑
b

min
{

1, 1
2

(√
2N1/2

b3/2 + 1− 1
)}

#{r ≤ b : r2 ≡ 1 (mod b)}

=
∑

b

min
{

1, 1
2

(√
2N1/2

b3/2 + 1− 1
)}
ρ(b).
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Random enough

In fact, the error is exactly the discrepancy D(N; α,β), where
(for a suitable bound B):

{ui} =
⋃
b≤B

{ r
b : 1 < r ≤ b, r2 ≡ 1 (mod b)

}
αi = 0 and βi = min

{
1, 1

2

(√
2N1/2

b3/2 + 1− 1
)}

Erdős–Turán inequality with a moving target: the
discrepancy is bounded in terms of exponential sums∑

b≤B

∑
1<r≤b

r2≡1 (mod b)

e2πikr/b.

Equidistribution of roots of r2 − 1: these exponential sums
can be suitably bounded by the adaptation of Hooley’s
method.
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Erdős–Turán inequality with a moving target: the
discrepancy is bounded in terms of exponential sums∑

b≤B

∑
1<r≤b

r2≡1 (mod b)

e2πikr/b.

Equidistribution of roots of r2 − 1: these exponential sums
can be suitably bounded by the adaptation of Hooley’s
method.

Diophantine quadruples Greg Martin



Introduction Equidistribution Reducible Quadratics Final Calculation

Random enough

In fact, the error is exactly the discrepancy D(N; α,β), where
(for a suitable bound B):

{ui} =
⋃
b≤B

{ r
b : 1 < r ≤ b, r2 ≡ 1 (mod b)

}
αi = 0 and βi = min

{
1, 1

2

(√
2N1/2

b3/2 + 1− 1
)}
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Putting the pieces together

Since the error is manageable, it remains only to evaluate∑
b

min
{

1, 1
2

(√
2N1/2

b3/2 + 1− 1
)}
ρ(b)

to count the number of doubly regular Diophantine quadruples.

Theorem (M.–Sitar, 2010)
The number of Diophantine quadruples in {1, . . . ,N} is

D4(N) ∼ CN1/3 log N,

where C =
24/3

3Γ(2/3)3 ≈ 0.33828 . . ..

This is consistent with Dujella’s upper and lower bounds.
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The end

These slides
www.math.ubc.ca/∼gerg/index.shtml?slides

Our paper “Erdős–Turán with a moving target,
equidistribution of roots of reducible quadratics, and
Diophantine quadruples”
www.math.ubc.ca/∼gerg/

index.shtml?abstract=ETMTERRQDQ
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