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Primitive sets

Definition
A primitive set is a set S ⇢ {2, 3, 4, . . . } with no element dividing
another: if m, n are distinct elements of S, then m - n.

Examples:
{m,m + 1,m + 2, . . . , 2m � 1} for any m � 2

the primes P = {2, 3, 5, 7, 11, . . . }
P

k

= {n 2 N : ⌦(n) = k} for any k � 2, where ⌦(n) is the
number of prime factors of n counted with multiplicity. For
example, P

2

= {4, 6, 9, 10, 14, 15, 21, 22, 25, 26, . . . }.
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Primitive sets

Definition
A primitive set is a set S ⇢ {2, 3, 4, . . . } with no element dividing
another: if m, n are distinct elements of S, then m - n.

Further examples:
S = {2} [ {3p : p � 3 prime} [ {5p

1

p

2

: p

1

� p

2

� 5 prime}
[ {7p

1

p

2

p

3

: p

1

� p

2

� p

3

� 7 prime} [ · · ·
“Primitive abundant numbers”: abundant numbers
(�(n) > 2n) without any abundant divisors

Nonexample:
the Fibonacci numbers
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Density of primitive sets

Theorem (Erdős, 1935)

If S is a primitive set, then

X

n2S

1

n log n

converges.

It seems like this would imply that every primitive set has
density 0, but not quite. It certainly implies that every primitive
set has lower density 0.

A counterintuitive set
On the other hand, Besicovitch gave a construction of primitive
sets with upper density greater than 1

2

� � for any � > 0.

In other words, if S(x) = #{s 2 S : s  x}, then S(x) > ( 1

2

� �)x
for arbitrarily large x.
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A set that only works when it has to

Besicovitch’s primitive sets
Contained in [x

1

, 2x

1

) [ [x
2

, 2x

2

) [ [x
3

, 2x

3

) [ · · · for a rapidly
increasing sequence {x

1

, x

2

, x

3

, . . . }
Obtained from this union of integrals greedily
S(2x

j

) > 1

2

� � for j sufficiently large
Most of the time, the counting function S(x) is very small
(since {x

j

} grows so fast)

Question
How large can a primitive set’s counting function be
consistently?
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Consistently large primitive sets

Example

If S = P is the set of primes, then S(x) ⇠ x

log x

.

Example

If S = P
k

= {n 2 N : ⌦(n) = k}, then S(x) ⇠ x(log log x)k�1

(k � 1)! log x

.

Theorem (Ahlswede/Khachatrian/Sárközy, 1999)

A primitive set S exists with S(x) � x

(log log x)(log log log x)1+"
.
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Consistently large primitive sets

Theorem (Ahlswede/Khachatrian/Sárközy, 1999)

A primitive set S exists with S(x) � x

(log log x)(log log log x)1+"
.

Partial summation
X

n2S

1

n log n

converges if and only if
Z 1

2

S(x)

x

2

log x

dx converges.

Consequently:
By Erdős: if S is primitive, then

Z 1

2

S(x)

x

2

log x

dx converges.

Impossible to have S(x) � x

(log log x)(log log log x)
, say.

END OF STORY?

OF COURSE NOT!
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A sort of converse

Erdős plus partial summation

If S is primitive, then
Z 1

2

S(x)

x

2

log x

dx converges.

Theorem (M.–Pomerance, 2011)

If F(x) is a “nice” function such that

Z 1

2

F(x)

x

2

log x

dx converges,

then there exists a primitive set S with S(x) ⇣ F(x).

Corollary
For any " > 0, there exists a primitive set S with

S(x) � x

(log log x)(log log log x) · · · (log

69

x)(log

70

x)1+"
.
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A particular construction of primitive sets

Definition
Fix a sequence p

1

< p

2

< · · · of primes, and define
S

k

= {n 2 N : ⌦(n) = k; p

k

| n; p

1

- n, . . . , p

k�1

- n}.

Example
If {p

j

} is all the primes, then S
1

= {2}, S
2

= {3p : p � 3 prime},
S

3

= {5p

1

p

2

: p

1

� p

2

� 5 prime}, etc.

Then S =
1[

k=1

S
k

is primitive.

Proof.
If m, n 2 S are distinct and m | n, then ⌦(m) < ⌦(n); but then
p⌦(m) divides m but not n.
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Thick primitive sets

Definition
Fix a sequence p

1

< p

2

< · · · of primes, with
P1

i=1

1

p

i

< 1

2

,
whose growth rate is tied to F(x). Define

S
k

= {n 2 N : ⌦(n) = k; p

k

| n; p

1

- n, . . . , p

k�1

- n}

so that S =
1[

k=1

S
k

is primitive.

S

k

(x) � 1

p

k

x

log x

(log log x)k�2

(k � 2)!

✓
1 � k � 3

log log x

k�1Y

j=1

1

p

j

◆
·

� 1

p

k

x

log x

(log log x)k�2

(k � 2)!
for k < 3

2

log log x.

Main contribution from k ⇠ log log x: S(x) roughly
x

pblog log xc
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pblog log xc
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Background Thick primitive sets Restricted primes

One constant to rule them all

Definition

E(S) =
X

n2S

1

n log n

for any S ⇢ {2, 3, . . . }.

For S primitive, Erdős proved more than that E(S) is finite; he
proved that E(S) is bounded by an absolute constant.
(Erdős/Zhang, 1993: the constant 1.84 suffices.)

Conjecture (Erdős, 1988)
If S is primitive, then E(S)  E(P) = 1.63 . . . .

Known for certain classes of primitive S [Zhang 1991, 1993]:
all elements n 2 S satisfy ⌦(n)  4; or
S is homogeneous: for n 2 S, the quantity ⌦(n) depends
only on smallest prime factor of n (e.g., earlier construction)
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For S primitive, Erdős proved more than that E(S) is finite; he
proved that E(S) is bounded by an absolute constant.
(Erdős/Zhang, 1993: the constant 1.84 suffices.)

Conjecture (Erdős, 1988)
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Primitive sets with restricted primes

Definition

E(S) =
X

n2S

1

n log n

Notation: integers with restricted prime factors
For any Q ⇢ P, define N(Q) = {n � 2 : if p | n, then p 2 Q}.

Conjecture (gulp! Banks–M., 2013)
If S ⇢ N(Q) is primitive, then E(S)  E(Q).
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Changing the statistic

Definition

E(S) =
X

n2S

1

n log n

and E

t

(S) =
X

n2S

1

n

t

Observation / first-year calculus
1

n log n

=

Z 1

1

dt

n

t

; therefore, E(S) =
Z 1

1

E

t

(S) dt

If we want to show that E(S)  E(Q) for every primitive
S ⇢ N(Q), it suffices to show that E

t

(S)  E

t

(Q) for all t > 1.

False if Q is too big (like Q = P)
True if Q is small enough
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Primitive sets with restricted primes

Notation: integers with restricted prime factors
For any Q ⇢ P, define N(Q) = {n � 2 : if p | n, then p 2 Q}.

Conjecture (Banks–M., 2013)
If S ⇢ N(Q) is primitive, then E(S)  E(Q).

Theorem (Banks–M., 2013)
If E

1

(Q)  1 +
p

1 � E

2

(Q), then the conjecture holds.

Corollary

If E

1

(Q) =
X

p2Q

1

p

 1.74, then the conjecture holds.
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Primitive sets with restricted primes

Notation
T = {all twin primes}, T

3

= T \ {3}

Corollary
If S is a primitive subset of N(T

3

), then E(S)  E(T
3

).

Out of all the primitive subsets of N(T
3

), we can identify the one
that maximizes

P
1

n log n

. . . even though we can’t say whether
that optimal set is finite or infinite!

Brun’s constant
Define B to be the sum of the reciprocals of the twin primes:
B = ( 1

3

+ 1

5

) + ( 1

5

+ 1

7

) + ( 1

11

+ 1

13

) + ( 1

17

+ 1

19

) + ( 1

29

+ 1

31

) + · · · .
True value believed to be 1.90216 · · ·
Best bound known: B < 2.347 (Crandall/Pomerance)
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Notation
T = {all twin primes}, T

3
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Corollary
Suppose that B < 2.09596. If S is a primitive subset of N(T ),
then E(S)  E(T ).
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The end

The two papers described in this talk, as well as these slides,
are available for downloading.

Primitive sets with large counting functions (with C.P.)
www.math.ubc.ca/⇠gerg/

index.shtml?abstract=PSLCF

Optimal primitive sets with restricted primes (with B.B.)
www.math.ubc.ca/⇠gerg/

index.shtml?abstract=OPSRP

These slides
www.math.ubc.ca/⇠gerg/index.shtml?slides
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