## Comparative Prime Number Theory

## Greg Martin

## Collaborative Research Group (CRG) " $L$-functions in Analytic Number Theory"

CRG Launch Event—November 19, 2022


Banff International Research Station
for Mathematical Innovation and Discovery


## Humans count primes ...

$\pi(x)=$ number of primes up to $x=\sum_{p \leq x} 1$
but nature counts prime powers
$\psi(x)=\sum_{p^{k} \leq x} \log p=\sum_{n \leq x} \Lambda(n)$, where

$$
\Lambda(n)= \begin{cases}\log p, & \text { if } n=p^{k} \text { for some } k \geq 1, \\ 0, & \text { otherwise } .\end{cases}
$$

- $\sum_{n=1}^{\infty} \Lambda(n) n^{-s}=-\frac{\zeta^{\prime}(s)}{\zeta(s)}$ is a nice meromorphic function

When going from $\psi(x)$ to $\pi(x)$, we:
(0) remove the weight $\log p$ (affects things quantitatively)
(2) remove the squares, cubes, 4th powers, $\ldots$. of primes (affects things qualitatively)

## Explicit formula

$$
\psi(x)=x-\sum_{\rho} \frac{x^{\rho}}{\rho}+O(\log x)
$$

- the sum is over nontrivial zeros $\rho$ of $\zeta(s)$


## Notation

- Write $\rho=\beta+i \gamma$, so that $x^{\rho}=x^{\beta} e^{i \gamma \log x}$
- Define $\Theta \in\left[\frac{1}{2}, 1\right]$ to be the supremum of the $\beta$ s that appear

$$
\text { - } \psi(x)-x=\Omega_{ \pm}\left(x^{\Theta-\varepsilon}\right) \text { (Landau) }
$$

## The rightmost zeros matter most

For any $\theta \in[0, \Theta)$,

$$
\psi(x)=x-\sum_{\rho: \theta<\beta \leq \Theta} x^{\beta} \frac{e^{i \gamma \log x}}{\rho}+O\left(x^{\theta} \log ^{2} x\right)
$$

- analysis of main term depends on whether there exist $\beta=\Theta$ and whether there exists $\left\{\beta_{k}\right\} \nearrow \Theta$


## Assuming the Riemann hypothesis $\left(\Theta=\frac{1}{2}\right)$

$$
E^{\psi}(x)=\frac{\psi(x)-x}{\sqrt{x}}=-\sum_{\gamma: \zeta\left(\frac{1}{2}+i \gamma\right)=0} \frac{e^{i \gamma \log x}}{\frac{1}{2}+i \gamma}+o(1)
$$

## Random model

Replace $e^{i \gamma \log x}$ by a random variable $X_{\gamma}$ that's uniform on $S^{1}$, and note that $e^{-i \gamma \log x}=\overline{e^{i \gamma \log x}}$ should force $X_{-\gamma}=\overline{X_{\gamma}}$ :

$$
X^{\psi}=\sum_{\gamma: \zeta\left(\frac{1}{2}+i \gamma\right)=0} \frac{X_{\gamma}}{|\rho|}=\sum_{\gamma>0} \frac{2 \Re X_{\gamma}}{\sqrt{\frac{1}{4}+\gamma^{2}}}
$$

## Random model

$$
X^{\psi}=\sum_{\gamma: \zeta\left(\frac{1}{2}+i \gamma\right)=0} \frac{X_{\gamma}}{|\rho|}=\sum_{\gamma>0} \frac{2 \Re X_{\gamma}}{\sqrt{\frac{1}{4}+\gamma^{2}}}
$$

- Linear Independence conjecture (LI): $\{\gamma>0\}$ is linearly independent over $\mathbb{Q}$-corresponds to $\left\{X_{\gamma}\right\}$ being independent random variables
- Under RH and LI, we can write down the Fourier transform of the limiting distribution of $E^{\psi}(x)$ (the characteristic function of $X^{\psi}$ ), from which we can extract lots of information
- Via tail estimates, we can give heuristics for the maximal oscillations of $E^{\psi}$ (Montgomery's conjecture):

$$
\limsup \frac{\psi(x)-x}{\sqrt{x}(\log \log \log x)^{2}}=\frac{1}{2 \pi}, \quad \lim \inf =-\frac{1}{2 \pi}
$$

## Back to primes

Passing from $\psi(x)$ to $\pi(x)$ requires (a) partial summation; (b) removing squares of primes, cubes of primes, etc.

$$
E^{\pi}(x)=\frac{\pi(x)-\operatorname{li}(x)}{\sqrt{x} / \log x}=-1-\sum_{\gamma: \zeta\left(\frac{1}{2}+i \gamma\right)=0} \frac{e^{i \gamma \log x}}{\frac{1}{2}+\gamma}+o(1)
$$

- Littlewood: the sum is $\Omega_{ \pm}(\log \log \log x)$
- used Diophantine approximation to find $x$ such that lots of the $e^{i \gamma \log x}$ point in the same direction
- therefore $\pi(x)>\operatorname{li}(x)$ infinitely often (contrary to conjecture)


## Rubinstein and Sarnak

The probability that $X^{\pi}=-1+X^{\psi}$ is negative is $\approx 0.99999974$. So assuming RH and LI , the set $\{x>0: \pi(x)>\operatorname{li}(x)\}$ has logarithmic density $\approx 0.00000026$.

## Conjectures made from early numerical data

- Mertens conjecture: if $M(x)=\sum_{n \leq x} \mu(n)$, then $|M(x)| \leq \sqrt{x}$
- Pólya's problem: if $L(x)=\sum_{n \leq x}(-1)^{\Omega(n)}$, is $L(x) \leq 0$ ?
- Turán's problem: if $L_{r}(x)=\sum_{n \leq x} \frac{(-1)^{\Omega(n)}}{n}$, is $L_{r}(x) \geq 0$ ?
- If true, each of these would imply RH (and all zeros simple), but also that LI has infinitely many violations (Ingham)
- All now known to be false (Haselgrove; Odlyzko/te Riele)
- $M(x) \ll \sqrt{x}$ is still unresolved, but probably false


## Dirichlet series

- $\sum_{n=1}^{\infty} \mu(n) n^{-s}=\frac{1}{\zeta(s)}$
- $\sum_{n=1}^{\infty}(-1)^{\Omega(n)} n^{-s}=\frac{\zeta(2 s)}{\zeta(s)}$
- $\sum_{n=1}^{\infty} \frac{(-1)^{\Omega(n)}}{n} n^{-s}=\frac{\zeta(2 s+2)}{\zeta(s+1)}$


## Explicit formulas

- $M(x)=\sum_{\rho} \frac{x^{\rho}}{\rho \zeta^{\prime}(\rho)}$
- $L(x)=\frac{x^{1 / 2}}{\frac{1}{2} \zeta\left(\frac{1}{2}\right)}+\sum_{\rho} \frac{\zeta(2 \rho) x^{\rho}}{\rho \zeta^{\prime}(\rho)}$
- $L_{r}(x)=\frac{x^{-1 / 2}}{-\frac{1}{2} \zeta\left(\frac{1}{2}\right)}+\sum_{\rho} \frac{\zeta(2 \rho) x^{\rho-1}}{(\rho-1) \zeta^{\prime}(\rho)}$


## Explicit formulas

- $M(x)=\sum_{n \leq x} \mu(n)=\sum_{\rho} \frac{x^{\rho}}{\rho \zeta^{\prime}(\rho)}$
- $L(x)=\sum_{n \leq x}(-1)^{\Omega(n)}=\frac{x^{1 / 2}}{\frac{1}{2} \zeta\left(\frac{1}{2}\right)}+\sum_{\rho} \frac{\zeta(2 \rho) x^{\rho}}{\rho \zeta^{\prime}(\rho)}$
- $L_{r}(x)=\sum_{n \leq x} \frac{(-1)^{\Omega(n)}}{n}=\frac{x^{-1 / 2}}{-\frac{1}{2} \zeta\left(\frac{1}{2}\right)}+\sum_{\rho} \frac{\zeta(2 \rho) x^{\rho-1}}{(\rho-1) \zeta^{\prime}(\rho)}$
- Results on the distribution of these sums often require RH and LI and some information/conjecture on $\sum_{\rho} \frac{1}{\left|\zeta^{\prime}(\rho)\right|}$
- Mossinghoff and Trudgian have studied the interpolating sums $\sum_{n \leq x} \frac{(-1)^{\Omega(n)}}{n^{\alpha}}$ for $0 \leq \alpha \leq 1$

Chebyshev observed that there seem to be more primes that are $3(\bmod 4)$ than primes that are $1(\bmod 4)$.

Other arithmetic progressions where we see advantages

- Primes that are $2(\bmod 3)$ over primes that are $1(\bmod 3)$
- Primes that are 3,5 , or $6(\bmod 7)$ over primes that are 1,2 , or $4(\bmod 7)$
- Primes that are 3,5 , or $7(\bmod 8)$ over primes that are $1(\bmod 8)$
- Primes that are 3 or $7(\bmod 10)$ over primes that are 1 or $9(\bmod 10)$
- Primes that are 5,7 , or $11(\bmod 12)$ over primes that are $1(\bmod 12)$
... in general, nonsquares $(\bmod q)$ over squares $(\bmod q)$


## Primes in arithmetic progressions

$$
\pi(x ; q, a)=\# \text { of primes up to } x \text { that are congruent to } a(\bmod q)
$$

$$
=\sum_{\substack{p \leq x \\ p \equiv a(\bmod q)}} 1
$$

$$
\psi(x ; q, a)=\sum_{\substack{n \leq x \\ n \equiv a(\bmod q)}} \Lambda(n)=\sum_{\substack{p^{k} \leq x \\ p^{k} \equiv a(\bmod q)}} \log p
$$

Now when going from $\psi(x ; q, a)$ to $\pi(x ; q, a)$, we remove squares of primes in the residue classes whose square is $a(\bmod q)$.

Definition (when $(a, q)=1$ )
$c(q ; a)=-1+\#\left\{b(\bmod q): b^{2} \equiv a(\bmod q)\right\}$

- given $q$, the only possible values for $c(q ; a)$ are -1 or $c(q ; 1)$


## Explicit formula for PNT in APs

$$
\psi(x ; q, a)=\frac{x}{\phi(q)}-\frac{1}{\phi(q)} \sum_{\chi(\bmod q)} \bar{\chi}(a) \sum_{\rho: L(\rho, \chi)=0} \frac{x^{\rho}}{\rho}
$$

Differences of two such counting functions:

$$
\begin{aligned}
E^{\psi}(x ; q, a, b) & =\phi(q)(\psi(x ; q, a)-\psi(x ; q, b)) \\
& =\sum_{\chi(\bmod q)}(\bar{\chi}(b)-\bar{\chi}(a)) \sum_{\rho: L(\rho, \chi)=0} \frac{x^{\rho}}{\rho}
\end{aligned}
$$

Random variable models

$$
X^{\psi}(q ; a, b)=\sum_{\chi(\bmod q)}|\chi(b)-\chi(a)| \sum_{\rho: L(\rho, \chi)=0} \frac{2 \Re X_{\gamma}}{\sqrt{\frac{1}{4}+\gamma^{2}}}
$$

- for $X^{\pi}(q ; a, b)$ : add $c(q ; b)-c(q ; a)$ to the right-hand side


## Logarithmic densities

$$
\delta^{\pi}(q ; a, b)=\lim _{x \rightarrow \infty} \int_{\substack{1 \leq t \leq x \\ \pi(x ; q, a)>\pi(x ; q, b)}} \frac{d t}{t}
$$

## Rubinstein/Sarnak

Assuming GRH and LI :

- each $\delta^{\pi}(q ; a, b)$ exists and $0<\delta^{\pi}(q ; a, b)<1$
- $\delta^{\pi}(q ; a, b)+\delta^{\pi}(q ; b, a)=1$ ("ties have density 0 ")
- $\delta^{\pi}(q ; a, b)>\frac{1}{2}$ if and only if $a$ is a nonsquare and $b$ is a square $(\bmod q)$
- $X^{\pi}(q ; a, b)$ tends to a standard normal random variable as $q \rightarrow \infty$; in particular, $\lim _{q \rightarrow \infty} \delta^{\pi}(q ; a, b)=\frac{1}{2}$


## Logarithmic densities

$$
\delta^{\pi}(q ; a, b)=\lim _{x \rightarrow \infty} \int_{\substack{1 \leq t \leq x \\ \pi(x ; q, a)>\pi(x ; q, b)}} \frac{d t}{t}
$$

## Fiorilli/M.

Assuming GRH and LI :

- if $a$ is a nonsquare and $b$ is a square $(\bmod q)$, then

$$
\delta^{\pi}(q ; a, b)-\frac{1}{2} \sim \frac{c(q ; 1)}{2 \sqrt{\pi \phi(q) \log q}}
$$

- calculated all 117 densities greater than 0.9
- most biased: $\delta^{\pi}(24 ; 5,1) \approx 0.999988$
- 117 is up to symmetries such as $\delta^{\pi}(q ; a, b)=\delta^{\pi}\left(q ; c^{2} a, c^{2} b\right)$
- secondary terms show that when $q$ is large, $\delta^{\pi}(q ;-1,1)$ is the smallest density exceeding $\frac{1}{2}$, followed by $\delta^{\pi}(q ; 3,1)$, $\delta^{\pi}(q ; 2,1), \delta^{\pi}(q ; 5,1), \ldots$
- assuming that $-1 / 3 / 2 / 5$ are nonsquares $(\bmod q)$


## Multi-way races

$\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right)$ is the logarithmic density of the set

$$
\left\{x>0: \pi\left(x ; q, a_{1}\right)>\pi\left(x ; q, a_{2}\right)>\cdots>\pi\left(x ; q, a_{k}\right)\right\}
$$

- $k$ ! possible orderings, so compare $\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right)$ to $\frac{1}{k!}$


## Assuming GRH and LI

- Rubinstein/Sarnak: $0<\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right)<1$ exists
- Feuerverger/M.: confirmed that $\delta^{\pi}(q ; a, b, c)$ can differ from $\frac{1}{6}$ even when $a, b, c$ are all nonsquares $(\bmod q)$
- Lamzouri: asymptotics for $\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right)-\frac{1}{k!}$ for $k$ fixed; the difference can be as large as $\frac{1}{\log q}$
- Harper/Lamzouri: $\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right) \sim \frac{1}{k!}$ still for $k<(\log q)^{1-\varepsilon}$
- Ford/Harper/Lamzouri: $k!\delta^{\pi}\left(q ; a_{1}, \ldots, a_{k}\right)$ can tend to 0 or to $\infty$ for $k>(\log q)^{1+\varepsilon}$


## Levels of expectations for prime number races

For every permutation $\left(\sigma_{1}, \ldots, \sigma_{k}\right)$ of $\left(a_{1}, \ldots, a_{k}\right)$, the prime number races among the $\pi\left(x ; q, a_{j}\right)$ is:

- exhaustive if each $\pi\left(x ; q, \sigma_{1}\right)>\cdots>\pi\left(x ; q, \sigma_{k}\right)$ has solutions for arbitrarily large $x$
- weakly inclusive if each $\delta^{\pi}\left(q ; \sigma_{1}, \ldots, \sigma_{k}\right)$ exists
- inclusive if each $\delta^{\pi}\left(q ; \sigma_{1}, \ldots, \sigma_{k}\right)$ is strictly positive
- strongly inclusive if the limiting distribution of $\left(E^{\pi}\left(x ; q, a_{1}\right), \ldots, E^{\pi}\left(x ; q, a_{k}\right)\right)$ has full support in $\mathbb{R}^{k}$

Rubinstein/Sarnak: GRH and LI imply that all prime number races are strongly inclusive. Can we weaken LI?

## Definition

if $L\left(\frac{1}{2}+i \gamma_{0}, \chi\right)=0$, then $\gamma_{0}$ is a self-sufficient ordinate if it is not in the $\mathbb{Q}$-span of $\left\{\gamma>0, \gamma \neq \gamma_{0}: L\left(\frac{1}{2}+i \gamma, \chi=0\right)\right\}$.

## M./Ng

Under GRH, for any prime number races $(\bmod q)$ :

- if each $L(s, \chi)(\bmod q)$ has 3 self-sufficient ordinates, then weakly inclusive ( $\delta^{\pi}\left(q ; \sigma_{1}, \ldots, \sigma_{k}\right)$ exists)
- if $\sum_{\chi(\bmod q)} \sum 1 / \gamma$ over self-sufficient zeros diverges, then strongly inclusive (consistent with $100 \%$ violations of LI )


## Devin

- extended these results to the Selberg class of $L$-functions
- even without RH, limiting logarithmic distribution exists when normalized by $x^{\Theta}$ (possibly a delta measure at 0 )
- with RH: if 1 self-sufficient ordinate exists, this distribution is absolutely continuous (with respect to Lebesgue measure), and the corresponding density exists


## ABCPNT

Ideal goal: a comprehensive Annotated Bibliography of all papers (and book chapters, letters, etc.) of Comparative Prime Number Theory, using modern and consistent notation

- it's nontrivial even to define exactly what CPNT is and isn't


## Current status

- ABCPNT currently has just over 300 items (missing some from the last 2 years)
- summaries complete for $75 \%$ of them (could use double-checking, especially non-English papers)
- students' draft summaries exist for the other $25 \%$
- introduction/notational conventions also about $75 \%$ written

COVID really derailed my editorial efforts. Help welcome!

## Haselgrove's condition

Assuming $L(\sigma, \chi) \neq 0$ for all real $0<\sigma<1$ and all $\chi(\bmod q)$ :

- Kátai: $\pi(x ; q, a)>\pi(x ; q, b)$ infinitely often if $a$ and $b$ are both squares or both nonsquares $(\bmod q)$
- Knapowski and Turán: $\pi(x ; q, a)>\pi(x ; q, 1)$ and $\pi(x ; q, 1)>\pi(x ; q, a)$ infinitely often
- Almost-periodicity of normalized explicit formula: if $\pi(x ; q, a)>\pi(x ; q, b)$ once then $\pi(x ; q, a)>\pi(x ; q, b)$ infinitely often
Sneed used these results and computations to show that every two-way prime number race modulo $q \leq 100$ is exhaustive


## Can we get other unconditional results?

For example, can we prove unconditionally that $\pi(x ; q, a)=\pi(x ; q, b)$ occurs only for $x$ in a set of density 0 ?

## Frequency of sign changes

Let $W^{\psi}(T)$ denote the number of sign changes of $\psi(x)-x$ for $x \in[0, T]$.

## Almost state of the art

- Pólya proved that $W^{\psi}(T) \geq(1+o(1)) \frac{\gamma_{1}}{\pi} \log T$, where $\gamma_{1} \approx 14.135$ is the smallest positive ordinate of a zero of $\zeta(s)$. General method:
- Since $\psi(x)-x=-\sum_{\rho} \frac{x^{\rho}}{\rho}$, averaging both sides yields $\frac{1}{x} \int_{0}^{x}(\psi(t)-t) d t=-\sum_{\rho} \frac{x^{\rho}}{\rho(\rho+1)}$.
- Repeated averaging yields $-\sum_{\rho} \frac{x^{\rho}}{\rho(\rho+1)^{k}}$.
- When $K$ is large enough, the sign of the extreme values of the first term dominates the sum of the rest.
- And sign changes of the iterated average implies sign changes of the original $\psi(x)-x$.
- Indeed, $\psi(x)-x$ has a sign change in any interval of the form $\left(T, e^{(1+o(1)) \gamma_{1} / \pi} T\right) \approx(T, 90 T)$
- Pólya proved that $W^{\psi}(T) \geq(1+o(1)) \frac{\gamma_{1}}{\pi} \log T$, where $\gamma_{1} \approx 14.135$ has $\zeta\left(\frac{1}{2}+i \gamma_{1}\right)=0$
- Kaczorowski improved this to $W^{\psi}(T) \geq(1+o(1))\left(\frac{\gamma_{1}}{\pi}+10^{-250}\right) \log T$
- Kaczorowski also proved $W^{\pi}(T) \gg \log T$, though ineffectively


## Sad news

The truth should be closer to $W^{\psi}(T) \approx \sqrt{T}$ (up to log factors)!

- The large-scale behaviour of $\psi(x)-x$ does somewhat resemble the behaviour of the first term in the explicit formula, being positive/negative on large intervals.
- However, when $\psi(x)-x$ does change sign, it tends to have lots of nearby sign changes. (both emperical observation and analogy with random walks)
- Averaging is completely blind to these local sign changes


## Function field analogues

Cha, Fiorilli, Jouve, Lamzouri, Sedrati, ...

- Instead of counting prime integers in residue classes modulo a fixed integer, count irreducible polynomials over $\mathbb{F}_{q}$ in residue classes modulo a fixed polynomial
- For the corresponding zeta function $\zeta_{C}$, RH is known (Weil)
- Only finitely many zeros, so distribution exists unconditionally. However, linear independence of arguments still relevant for specifics
- "arguments" because $\zeta_{C}$ is a rational function of $q^{-s}$, so if $s=\frac{1}{2}+i \gamma$, we really care about $\gamma$ modulo $\frac{2 \pi}{\log q}$
- LI is known to fail sometimes when $q^{-s}=q^{-1 / 2}$ or $q^{-s}=i q^{-1 / 2}$, sometimes with two different zeros

Can we describe systematic ways to find violations of LI over function fields?

## The Linear Independence hypothesis

What partial progress can we make towards proving LI for $\zeta(s)$ ?

- Li/Radziwiłł: a positive proportion of points $\frac{1}{2}+i(\alpha k+\beta)$ in a vertical arithmetic progression are not zeros of $\zeta(s)$
- unpublished work of Banks/M./Milinovich/Ng: as $\frac{1}{2}+i \gamma$ runs over zeros of $\zeta(s)$, lots of $\frac{1}{2}+2 i \gamma$ are not zeros of $\zeta(s)$ (and some generalizations)
- "Silberman's problem": Prove that at least one ordinate of a zero of $\zeta(s)$ is irrational!

Related:

- Is there a theoretical way to prove LI for families of $\zeta_{C}(s)$ (zeta functions of curves over finite fields)?

Quantitative LI: If $k_{\gamma}$ are integers, not all 0 , with $\sum\left|k_{\gamma}\right| \leq K$, then

$$
\left|\sum_{0<\gamma \leq T} k_{\gamma} \gamma\right| \gg_{\varepsilon, K} \exp \left(-T^{1-\varepsilon}\right)
$$

We think this conjecture should be better known. It could lead to conditional proofs of some heuristics like:

- Montgomery's conjecture

$$
\limsup \frac{\psi(x)-x}{\sqrt{x}(\log \log \log x)^{2}}=\frac{1}{2 \pi}, \quad \lim \inf =-\frac{1}{2 \pi}
$$

- Gonek's conjecture: there exists $B>0$ such that

$$
\lim \sup \frac{M(x)}{\sqrt{x}(\log \log \log x)^{5 / 4}}=B, \quad \liminf =-B
$$

- compare $\sum_{0<\gamma<T} \frac{1}{|\rho|} \asymp(\log T)^{2}$ to the conjectured $\sum_{0<\gamma<T} \frac{1}{\left|\rho \zeta^{\prime}(\rho)\right|} \asymp(\log T)^{5 / 4}$


## Three races with the same density

Each of the following sets has (on RH and LI) the same logarithmic density $\approx 0.99999974$ :

- $\{x>0: \pi(x)<\operatorname{li}(x)\}$
- $\{x>0$ : $\theta(x)<x\}$, where $\theta(x)=\sum_{p \leq x} \log p$
- "Mertens product race" $\left\{x>0: \prod_{p \leq x}\left(1-\frac{1}{p}\right)^{-1}>e^{C_{0}} \log x\right\}$, where $C_{0}$ is Euler's constant (Lamzouri)
The first two sets should be identical up to a set of density 0 .
Can we show that the same is not true of the third set?
Other correlations between similar error terms
Pólya and Turán and between: each function $\sum_{n \leq x} \frac{(-1)^{\Omega(n)}}{n^{\alpha}}$ for $0 \leq \alpha \leq 1$ has a corresponding set where it exceeds its main term. How are these sets correlated?


## Ten-way race modulo 11 (Bays/Hudson)

If we look at how the ordering of $\pi(x ; 11,1), \ldots, \pi(x ; 11,10)$ evolves as $x$ increases:

- The smallest function, with minor deviations, cycles in order through $9,4,5,3,1 \equiv 9^{1}, 9^{2}, 9^{3}, 9^{4}, 9^{5}(\bmod 11)$
- The largest function, with minor deviations, cycles in order through $2,7,6,8,10 \equiv-9^{1},-9^{2},-9^{3},-9^{4},-9^{5}(\bmod 11)$
- When $9^{k}$ is in last place, $-9^{k}$ tends to be in first place What can we say about the correlations of the various sets implied by these observations?


## Public service announcement

Andrey S. Shchebetov has coded a "Chebyshev's Bias Visualizer" that flexibly plots error terms for primes in APs

- you can click on that red link
 Naty 그N


