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A tale of two subjects

Questions about the distribution of prime numbers, and about
the existence of prime numbers of special forms, have been
stymieing mathematicians for over two thousand years. It’s
almost necessary to study two different subjects:

the theorems about prime numbers that we have been able
to prove

the (vastly more numerous) conjectures about prime
numbers that we haven’t yet succeeded at proving

Let’s look at the most central questions concerning the
distribution of primes, seeing which ones have been answered
already and what mathematical techniques have been used to
attack them.
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Lots of primes

Theorem (Euclid)
There are infinitely many primes.

Proof.
If not, multiply them all together and add one:

N = p1p2 · · ·pk + 1

This number N must have some prime factor, but is not divisible
by any of the pj , a contradiction.
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How many primes?

Question
Approximately how many primes are there less than some
given number x?

Legendre and Gauss conjectured the answer.

Riemann wrote a groundbreaking memoir describing how
one could prove it using functions of a complex variable.

Prime Number Theorem (Hadamard and
de la Vallée-Poussin independently, 1898)
The number of primes less than x is asymptotically x/ ln x .
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Proof of the Prime Number Theorem

Riemann’s plan for proving the Prime Number Theorem was to
study the Riemann zeta function

ζ(s) =
∞∑

n=1

n−s.

This sum converges for every complex number s with real part
bigger than 1, but there is a way to nicely define ζ(s) for all
complex numbers s 6= 1.

The proof of the Prime Number Theorem boils down to figuring
out where the zeros of ζ(s) are. Hadamard and de la Vallée-
Poussin proved that there are no zeros with real part equal to 1,
which is enough to prove the Prime Number Theorem.

Prime numbers: what we know, and what we know we think Greg Martin
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Proof of the Prime Number Theorem

Riemann’s plan for proving the Prime Number Theorem was to
study the Riemann zeta function

ζ(s) =
∞∑

n=1

n−s.

This sum converges for every complex number s with real part
bigger than 1, but there is a way to nicely define ζ(s) for all
complex numbers s 6= 1.

More is suspected, however. Other than some “trivial zeros”
s = −2,−4,−6, . . . , Riemann conjectured:

Riemann Hypothesis
All nontrivial zeros of ζ(s) have real part equal to 1/2.
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Primes of the form 4n + 3

Let’s begin to look at primes of special forms.

Theorem
There are infinitely many primes p ≡ −1 (mod 4).

Proof.
If not, let p1, p2, . . . , pk be all such primes, and define

N = 4p1p2 · · ·pk − 1.

The product of numbers that are all 1 (mod 4) is still 1 (mod 4),
but N ≡ −1 (mod 4). Therefore N must have some prime factor
that’s congruent to −1 (mod 4), a contradiction.
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Primes of the form 4n + 1

Theorem
There are infinitely many primes p ≡ 1 (mod 4).

Proof.
If not, let p1, p2, . . . , pk be all such primes, and define

N = 4(p1p2 · · ·pk )2 + 1.

If q is a prime factor of N, then 4(p1p2 · · ·pk )2 ≡ −1 (mod q).
But it can be shown that 4x2 ≡ −1 (mod q) has a solution x if
and only q ≡ 1 (mod 4). Therefore N has all prime factors
congruent to 1 (mod 4), a contradiction.
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Similar proofs

Elementary arguments like this can address many, but not all,
arithmetic progressions.

Theorem (Schur 1912; R. Murty 1988)
The existence of infinitely many primes p ≡ a (mod m) can be
proved in this way if and only if a2 ≡ 1 (mod m).

For example, such proofs exist for each of 1 (mod 8),
3 (mod 8), 5 (mod 8), and 7 (mod 8). (Note that it doesn’t
make sense to look for infinitely many primes
p ≡ a (mod m) unless gcd(a, m) = 1.)

No such proof exists for 2 (mod 5) or 3 (mod 5).

Prime numbers: what we know, and what we know we think Greg Martin
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Dirichlet’s theorem

Theorem (Dirichlet, 1837)
If gcd(a, m) = 1, then there are infinitely many primes
p ≡ a (mod m).

In fact, the proof of the Prime Number Theorem provided more
information: if φ(m) denotes the number of integers 1 ≤ a ≤ m
such that gcd(a, m) = 1, then the primes are equally distributed
among the φ(m) possible arithmetic progressions:

Theorem
If gcd(a, m) = 1, then the number of primes p ≡ a (mod m) that
are less than x is asymptotically x/(φ(m) ln x).

Prime numbers: what we know, and what we know we think Greg Martin
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Proof of Dirichlet’s theorem

To be able to pick out individual arithmetic progressions,
Dirichlet introduced the dual group of group characters, namely
homomorphisms χ : (Z/mZ)× → C. Each group character
gives rise to a Dirichlet L-function

L(s, χ) =
∞∑

n=1
gcd(n,m)=1

χ(n)n−s.

By showing that lims→1 L(s, χ) exists and is nonzero for every
(nontrivial) character χ, Dirichlet could prove that there are
infinitely many primes p ≡ a (mod m) when gcd(a, m) = 1.
Later, when the analytic techniques for proving the Prime
Number Theorem were established, Dirichlet’s algebraic
innovations could be immediately incorporated to prove the
asymptotic formula for primes in arithmetic progressions.

Prime numbers: what we know, and what we know we think Greg Martin
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Prime values of polynomials

Conjecture
If f (n) is a reasonable polynomial with integer coefficients, then
f (n) should be prime infinitely often.

What does “reasonable” mean?

f (n) should be irreducible over the integers (unlike, for
example, n3 or n2 − 1).

f (n) shouldn’t be always divisible by some fixed integer
(unlike, for example, 15n + 35 or n2 + n + 2).

So for example, n2 + 1 is a reasonable polynomial.

To measure the second property defining “reasonable”. . .
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Prime values of polynomials

Definition
σf (p) is the number of integers 1 ≤ k ≤ p such that
f (k) ≡ 0 (mod p).

Conjecture
If f (n) is an irreducible polynomial with integer coefficients such
that σf (p) < p for all primes p, then f (n) should be prime
infinitely often. In fact, the number of integers 1 ≤ n ≤ x such
that f (n) is prime should be asymptotically

x
ln x

1
deg f

∏
p

(
1− σf (p)

p

)(
1− 1

p

)−1

.
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Prime values of polynomials

Question
What does this conjecture assert when f (n) = mn + a is a
linear polynomial?

Since σf (p) = p for any prime p dividing gcd(m, a), the product
contains a factor (1− p/p)(1− 1/p)−1 = 0 if gcd(m, a) > 1.
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Sieve methods

One can count the number of primes in a set of integers using
inclusion-exclusion; however, each inclusion/exclusion step
comes with an error term in practice, and they add up to swamp
the main term.

Sieve methods use approximate inclusion-exclusion formulas to
try to give upper and lower bounds for the number of primes in
the set.

For prime values of polynomials, these bounds tend to look like:

upper bound: at most 48 times as many primes as
expected

lower bound: at least −46 times as many primes as
expected

Prime numbers: what we know, and what we know we think Greg Martin
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Pairs of linear polynomials

We could choose a reasonable pair of polynomials f (n) and
g(n) and ask whether they are simultaneously prime infinitely
often.

f (n) = n and g(n) = n + 1: unreasonable

f (n) = n and g(n) = n + 2: the Twin Primes Conjecture

f (n) = n and g(n) = 2n + 1: Sophie Germaine primes

f (n) = n and g(n) = 2K − n for some big even integer 2K :
Goldbach’s Conjecture asserts that they’re simultaneously
prime at least once

Prime numbers: what we know, and what we know we think Greg Martin
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Systems of polynomials

We could even choose any number of polynomials f1, f2, . . . of
any degrees and ask that they are all simultaneously prime
infinitely often. We need them all to be irreducible, and we also
need their product to have no fixed prime divisor.

Example polynomial triples

n and n2 + 1: product is always divisible by 2

n and 2n2 + 1 and 4n2 + 1: product is always divisible by 3

n and 4n2 + 1 and 6n2 + 1: product is always divisible by 5

n and 4n2 + 1 and 10n2 + 1: product has no fixed prime
factor

Prime numbers: what we know, and what we know we think Greg Martin
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Even more wishful thinking

Schinzel’s “Hypothesis H”
If f1(n), . . . , fk (n) are distinct irreducible polynomials with
integer coefficients such that σf1···fk (p) < p for all primes p, then
f1(n), . . . , fk (n) should be simultaneously prime infinitely often.

Bateman/Horn Conjecture
In the above situation, the number of integers 1 ≤ n ≤ x such
that f1(n), . . . , fk (n) is simultaneously prime should be
asymptotically

x
(ln x)k

1
(deg f1) · · · (deg fk )

∏
p

(
1−

σf1···fk (p)

p

)(
1− 1

p

)−k

.
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One polynomial in more than one variable

Quadratic forms are known to represent primes infinitely often;
in fact the set of prime values often has quite a bit of structure.

Example 1

The prime values of the polynomial 4m2 + n2 are exactly the
primes p ≡ 1 (mod 4).

Example 2

The prime values of the polynomial 2m2 − 2mn + 3n2, other
than 2, are exactly the primes whose last digit is 3 or 7 and
whose second-to-last digit is even.

However, unless the degree is small relative to the number of
variables, there are only a few examples known of polynomials
with infinitely many prime values; two are m2 +n4 and m3 +2n3.

Prime numbers: what we know, and what we know we think Greg Martin



Introduction Single prime numbers Multiple prime numbers Random prime questions

One polynomial in more than one variable

Quadratic forms are known to represent primes infinitely often;
in fact the set of prime values often has quite a bit of structure.

Example 1

The prime values of the polynomial 4m2 + n2 are exactly the
primes p ≡ 1 (mod 4).

Example 2

The prime values of the polynomial 2m2 − 2mn + 3n2, other
than 2, are exactly the primes whose last digit is 3 or 7 and
whose second-to-last digit is even.

However, unless the degree is small relative to the number of
variables, there are only a few examples known of polynomials
with infinitely many prime values; two are m2 +n4 and m3 +2n3.

Prime numbers: what we know, and what we know we think Greg Martin



Introduction Single prime numbers Multiple prime numbers Random prime questions

One polynomial in more than one variable

Quadratic forms are known to represent primes infinitely often;
in fact the set of prime values often has quite a bit of structure.

Example 1

The prime values of the polynomial 4m2 + n2 are exactly the
primes p ≡ 1 (mod 4).

Example 2

The prime values of the polynomial 2m2 − 2mn + 3n2, other
than 2, are exactly the primes whose last digit is 3 or 7 and
whose second-to-last digit is even.

However, unless the degree is small relative to the number of
variables, there are only a few examples known of polynomials
with infinitely many prime values; two are m2 +n4 and m3 +2n3.

Prime numbers: what we know, and what we know we think Greg Martin



Introduction Single prime numbers Multiple prime numbers Random prime questions

One polynomial in more than one variable

Quadratic forms are known to represent primes infinitely often;
in fact the set of prime values often has quite a bit of structure.

Example 1

The prime values of the polynomial 4m2 + n2 are exactly the
primes p ≡ 1 (mod 4).

Example 2

The prime values of the polynomial 2m2 − 2mn + 3n2, other
than 2, are exactly the primes whose last digit is 3 or 7 and
whose second-to-last digit is even.

However, unless the degree is small relative to the number of
variables, there are only a few examples known of polynomials
with infinitely many prime values; two are m2 +n4 and m3 +2n3.

Prime numbers: what we know, and what we know we think Greg Martin



Introduction Single prime numbers Multiple prime numbers Random prime questions

Primes in arithmetic progressions

The k polynomials m, m + n, m + 2n, . . . , m + (k − 1)n in two
variables define an arithmetic progression of length k .

Example
With k = 5, taking m = 199 and n = 210 gives the quintuple
199, 409, 619, 829, 1039 of primes in arithmetic progression.

For k = 3, it was proved by Vinogradov and van der Corput
(1930s) that there are infinitely many triples of primes in
arithmetic progression. But even the case k = 4 was elusive.

Theorem (former UBC postdoc Ben Green and recent
Fields Medal winner Terry Tao, 2004)
For any k, there are infinitely many k-tuples of primes in
arithmetic progression.

Prime numbers: what we know, and what we know we think Greg Martin
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Primes in arithmetic progressions

Theorem (Green/Tao, 2004)
For any k, there are infinitely many k-tuples of primes in
arithmetic progression.

The methods used to prove this theorem were, for the most
part, very different from usual proofs in number theory. Green
and Tao formulated a generalization of Szemeredi’s Theorem,
which tells us that “large” subsets of the integers always
contain long arithmetic progressions, to “large” subsubsets of
“nice” subsets of the integers.

They used some sieve method weights to construct the “nice”
subset of the integers inside which the primes sit as a “large”
subsubset.

Prime numbers: what we know, and what we know we think Greg Martin
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Mersenne primes

Consider numbers of the form 2n − 1. Since

2uv − 1 = (2u − 1)(2(v−1)u + 2(v−2)u + · · ·+ 22u + 2u + 1),

we see that 2n − 1 cannot be prime unless n itself is prime.

We currently know 44 values of n for which 2n − 1 is prime:
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, . . . , 32,582,657.

Conjecture
There are infinitely many n for which 2n − 1 is prime.

Prime numbers: what we know, and what we know we think Greg Martin
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Connection with perfect numbers

Definition
A number is perfect if it equals the sum of its proper divisors.

Example
28 = 1 + 2 + 4 + 7 + 14 is a perfect number.

Each Mersenne prime 2n − 1 gives rise to a perfect number
2n−1(2n − 1), and all even perfect numbers are of this form.

Conjecture
There are no odd perfect numbers.

Prime numbers: what we know, and what we know we think Greg Martin
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Fermat primes

Consider numbers of the form 2n + 1. Since

2uv + 1 = (2u + 1)(2(v−1)u − 2(v−2)u + · · ·+ 22u − 2u + 1)

if v is odd, we see that 2n + 1 cannot be prime unless n itself is
a power of 2.

We currently know 5 values of n for which 2n + 1 is prime:
1, 2, 4, 8, 16.

Conjecture
There are no other n for which 2n + 1 is prime.

Gauss proved that a regular k -sided polygon can be
constructed with a straightedge and compass if and only if the
odd prime factors of k are distinct Fermat primes 2n + 1.

Prime numbers: what we know, and what we know we think Greg Martin
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Prime numbers: what we know, and what we know we think Greg Martin
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Artin’s Conjecture

Some decimal expansions of fractions take a long time to start
repeating:

1
7 = 0.142857 1

19 = 0.052631578947368421

When p is a prime, the period of 1/p is equal to the order of 10
modulo p, that is, the smallest positive integer t such that
10t ≡ 1 (mod p). This order is always some divisor of p − 1.

Artin’s Conjecture
There are infinitely many primes p for which the order of 10
modulo p equals p − 1, that is, for which the period of the
decimal expansion for 1/p is as large as possible.

Prime numbers: what we know, and what we know we think Greg Martin
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