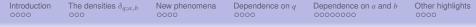
Introduction 0000 The densities $\delta_{q;a,b}$

New phenomena

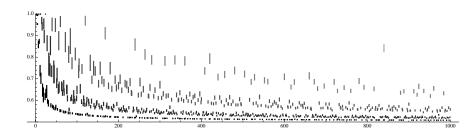
 $\begin{array}{c} \text{Dependence on } q \\ \text{oooo} \end{array}$

Dependence on *a* and *b*

Other highlights


Prime number races An asymptotic formula for the densities

Greg Martin University of British Columbia


joint work with Daniel Fiorilli Université de Montréal

Analytic and Combinatorial Number Theory Institute of Mathematical Sciences Chennai, India August 31, 2010

Prime number races: An asymptotic formula for the densities

Please turn off your cell phones and beepy things.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Outlin	е				

- Introduction
- 2 The densities $\delta_{q;a,b}$
- 3 Data and new phenomena
- 4 Dependence on the modulus q
- 5 Dependence on the residue classes *a* and *b*

6 Other highlights

Prime number races: An asymptotic formula for the densities

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss with the following statement:

There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Since then, "notable differences" have been observed among primes of various forms qn + a.

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss with the following statement:

There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Since then, "notable differences" have been observed among primes of various forms qn + a.

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss with the following statement:

There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second.

Since then, "notable differences" have been observed among primes of various forms qn + a.

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Races where such advantages are observed:

- Primes that are 2 (mod 3) over primes that are 1 (mod 3)
- Primes that are 3 (mod 4) over primes that are 1 (mod 4)
- Primes that are 2 or 3 (mod 5) over primes that are 1 or 4 (mod 5)
- Primes that are 3, 5, or 6 (mod 7) over primes that are 1, 2, or 4 (mod 7)
- Primes that are 3, 5, or 7 (mod 8) over primes that are 1 (mod 8); and 5, 7, or 11 (mod 12) over 1 (mod 12)

The general pattern

Introduction
oooThe densities $\delta_{q;a,b}$
oooNew phenomena
oooDependence on q
oooDependence on a and b
ooooOther highlights
oooo

Past results: computational

Notation

 $\pi(x; q, a) = \{ \text{number of primes } p \le x \text{ such that } p \equiv a \pmod{q} \}$

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time at x = 26,861, but $\pi(x; 4, 3) = \pi(x; 4, 1)$ again at x = 26,863; then $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the second time at x = 616,481
- $\pi(x; 8, 1) > \pi(x; 8, 5)$ for the first time at x = 588,067,889—although $\pi(x; 8, 1)$ still lags behind $\pi(x; 8, 3)$ and $\pi(x; 8, 7)$
- $\pi(x;3,1) > \pi(x;3,2)$ for the first time at x = 608,981,813,029

Past results: computational

Notation

 $\pi(x;q,a) = \{ \text{number of primes } p \le x \text{ such that } p \equiv a \pmod{q} \}$

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time at x = 26,861, but $\pi(x; 4, 3) = \pi(x; 4, 1)$ again at x = 26,863; then $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the second time at x = 616,481
- $\pi(x; 8, 1) > \pi(x; 8, 5)$ for the first time at x = 588,067,889—although $\pi(x; 8, 1)$ still lags behind $\pi(x; 8, 3)$ and $\pi(x; 8, 7)$
- $\pi(x; 3, 1) > \pi(x; 3, 2)$ for the first time at x = 608,981,813,029

Past results: computational

Notation

 $\pi(x;q,a) = \{ \text{number of primes } p \le x \text{ such that } p \equiv a \pmod{q} \}$

- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time at x = 26,861, but $\pi(x; 4, 3) = \pi(x; 4, 1)$ again at x = 26,863; then $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the second time at x = 616,481
- $\pi(x; 8, 1) > \pi(x; 8, 5)$ for the first time at x = 588,067,889—although $\pi(x; 8, 1)$ still lags behind $\pi(x; 8, 3)$ and $\pi(x; 8, 7)$
- $\pi(x; 3, 1) > \pi(x; 3, 2)$ for the first time at x = 608,981,813,029

Past results: computational

Notation

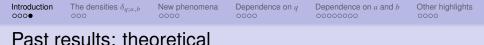
 $\pi(x;q,a) = \{ \text{number of primes } p \le x \text{ such that } p \equiv a \pmod{q} \}$

Further computation (1950s and beyond) reveals that there are occasional periods of triumph for the square residue classes over nonsquare residue classes:

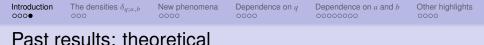
- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time at x = 26,861, but $\pi(x; 4, 3) = \pi(x; 4, 1)$ again at x = 26,863; then $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the second time at x = 616,481
- $\pi(x; 8, 1) > \pi(x; 8, 5)$ for the first time at x = 588,067,889—although $\pi(x; 8, 1)$ still lags behind $\pi(x; 8, 3)$ and $\pi(x; 8, 7)$

• $\pi(x; 3, 1) > \pi(x; 3, 2)$ for the first time at x = 608,981,813,029

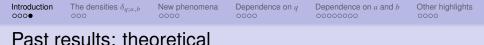
Past results: computational


Notation

 $\pi(x;q,a) = \{ \text{number of primes } p \le x \text{ such that } p \equiv a \pmod{q} \}$


- $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the first time at x = 26,861, but $\pi(x; 4, 3) = \pi(x; 4, 1)$ again at x = 26,863; then $\pi(x; 4, 1) > \pi(x; 4, 3)$ for the second time at x = 616,481
- $\pi(x; 8, 1) > \pi(x; 8, 5)$ for the first time at x = 588,067,889—although $\pi(x; 8, 1)$ still lags behind $\pi(x; 8, 3)$ and $\pi(x; 8, 7)$
- $\pi(x;3,1) > \pi(x;3,2)$ for the first time at x = 608,981,813,029

Introduction 000●	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on a and b	Other highlights		
Past results: theoretical							


- The prime number theorem for arithmetic progressions (1900 + O(1)): $\pi(x;q,a) \sim \pi(x;q,b)$
- Littlewood (1910s): each of $\pi(x; 4, 1)$ and $\pi(x; 4, 3)$ is ahead of the other for arbitrarily large *x*, and similarly for $\pi(x; 3, 1)$ and $\pi(x; 3, 2)$
- Turán and Knapowski (1960s): for many pairs *a*, *b* of residue classes, π(x; q, a) is ahead of π(x; q, b) for arbitrarily large *x*. However, assumptions on the locations of zeros of Dirichlet *L*-functions are necessary.
- Kaczorowski (1990s): further results in this vein and also for "3-way races", "4-way races", etc.

- The prime number theorem for arithmetic progressions (1900 + O(1)): $\pi(x;q,a) \sim \pi(x;q,b)$
- Littlewood (1910s): each of $\pi(x; 4, 1)$ and $\pi(x; 4, 3)$ is ahead of the other for arbitrarily large *x*, and similarly for $\pi(x; 3, 1)$ and $\pi(x; 3, 2)$
- Turán and Knapowski (1960s): for many pairs *a*, *b* of residue classes, π(x; q, a) is ahead of π(x; q, b) for arbitrarily large *x*. However, assumptions on the locations of zeros of Dirichlet *L*-functions are necessary.
- Kaczorowski (1990s): further results in this vein and also for "3-way races", "4-way races", etc.

- The prime number theorem for arithmetic progressions (1900 + O(1)): $\pi(x;q,a) \sim \pi(x;q,b)$
- Littlewood (1910s): each of $\pi(x; 4, 1)$ and $\pi(x; 4, 3)$ is ahead of the other for arbitrarily large *x*, and similarly for $\pi(x; 3, 1)$ and $\pi(x; 3, 2)$
- Turán and Knapowski (1960s): for many pairs *a*, *b* of residue classes, π(x; q, a) is ahead of π(x; q, b) for arbitrarily large *x*. However, assumptions on the locations of zeros of Dirichlet *L*-functions are necessary.
- Kaczorowski (1990s): further results in this vein and also for "3-way races", "4-way races", etc.

- The prime number theorem for arithmetic progressions (1900 + O(1)): $\pi(x;q,a) \sim \pi(x;q,b)$
- Littlewood (1910s): each of $\pi(x; 4, 1)$ and $\pi(x; 4, 3)$ is ahead of the other for arbitrarily large *x*, and similarly for $\pi(x; 3, 1)$ and $\pi(x; 3, 2)$
- Turán and Knapowski (1960s): for many pairs *a*, *b* of residue classes, π(x; q, a) is ahead of π(x; q, b) for arbitrarily large *x*. However, assumptions on the locations of zeros of Dirichlet *L*-functions are necessary.
- Kaczorowski (1990s): further results in this vein and also for "3-way races", "4-way races", etc.

Introduction	The densities $\delta_{q;a,b}$ •00	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Defining delta					

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

 $\delta_{q;a,b}$ is the limiting "probability" that when a "random" real number *x* is chosen, there are more primes that are congruent to *a* (mod *q*) up to *x* then there are congruent to *b* (mod *q*).

Introduction	The densities $\delta_{q;a,b}$ ••••	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Defining delta					

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

 $\delta_{q;a,b}$ is the limiting "probability" that when a "random" real number *x* is chosen, there are more primes that are congruent to *a* (mod *q*) up to *x* then there are congruent to *b* (mod *q*).

Prime number races: An asymptotic formula for the densities

Introduction	The densities $\delta_{q;a,b}$ ••••	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Defining delta					

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

 $\delta_{q;a,b}$ is the limiting "probability" that when a "random" real number *x* is chosen, there are more primes that are congruent to *a* (mod *q*) up to *x* then there are congruent to *b* (mod *q*).

Prime number races: An asymptotic formula for the densities

Introduction	The densities $\delta_{q;a,b}$ ••••	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Defining delta					

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

 $\delta_{q;a,b}$ is the limiting "probability" that when a "random" real number *x* is chosen, there are more primes that are congruent to *a* (mod *q*) up to *x* then there are congruent to *b* (mod *q*).

Introduction	The densities $\delta_{q;a,b}$ $0 \bullet 0$	New phenomena	Dependence on q	Dependence on a and b	Other highlights

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin (2002) shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- Ll is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Introduction	The densities $\delta_{q;a,b}$ $\circ \bullet \circ$	New phenomena	Dependence on q	Dependence on a and b	Other highlights

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin (2002) shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- Ll is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Introduction	The densities $\delta_{q;a,b}$ $\circ \bullet \circ$	New phenomena	Dependence on q	Dependence on a and b	Other highlights
	_				

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin (2002) shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- Ll is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Introduction	The densities $\delta_{q;a,b}$ $\circ \bullet \circ$	New phenomena	Dependence on q	Dependence on a and b	Other highlights

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin (2002) shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- LI is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Introduction

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on *a* and *b* 0000000

Other highlights

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

- $\delta_{q;a,b}$ always exists and is strictly between 0 and 1
- $\delta_{q;a,b} + \delta_{q;b,a} = 1 \dots$ that is, $\delta(\text{"tie"}) = 0$
- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Introduction
000The densities $\delta_{q;a,b}$ New phenomena
000Dependence on q
000Dependence on a and bOther highlights
0000

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

• $\delta_{q;a,b}$ always exists and is strictly between 0 and 1

•
$$\delta_{q;a,b} + \delta_{q;b,a} = 1 \dots$$
 that is, $\delta(\text{"tie"}) = 0$

- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Introduction
 $\circ\circ\circ\circ$ The densities $\delta_{q;a,b}$
 $\circ\circ\circ\circ$ New phenomena
 $\circ\circ\circ\circ$ Dependence on q
 $\circ\circ\circ\circ$ Dependence on a and b
 $\circ\circ\circ\circ\circ$ Other highlights
 $\circ\circ\circ\circ$

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

- $\delta_{q;a,b}$ always exists and is strictly between 0 and 1
- $\delta_{q;a,b} + \delta_{q;b,a} = 1 \dots$ that is, $\delta(\text{"tie"}) = 0$
- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Introduction
 $\circ\circ\circ\circ$ The densities $\delta_{q;a,b}$ New phenomena
 $\circ\circ\circ\circ$ Dependence on qDependence on a and bOther highlights
 $\circ\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ\circ\circ$ $\circ\circ\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ\circ$

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

- $\delta_{q;a,b}$ always exists and is strictly between 0 and 1
- $\delta_{q;a,b} + \delta_{q;b,a} = 1 \dots$ that is, $\delta(\text{"tie"}) = 0$
- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂
- $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

IntroductionThe densities $\delta_{q;a,b}$ New phenomenaDependence on qDependence on a and bOther highlights000000000000000000000000

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

We calculated (assuming, as usual, GRH and LI) many examples of the densities $\delta_{q;a,b}$.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over squares and nonsquares (mod *q*).

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

We calculated (assuming, as usual, GRH and LI) many examples of the densities $\delta_{q;a,b}$.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over squares and nonsquares (mod *q*).

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

We calculated (assuming, as usual, GRH and LI) many examples of the densities $\delta_{q;a,b}$.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over squares and nonsquares (mod *q*).

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

We calculated (assuming, as usual, GRH and LI) many examples of the densities $\delta_{q;a,b}$.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with q fixed, the values of $\delta_{q;a,b}$ vary significantly as a and b vary over squares and nonsquares (mod q).

 Introduction
 The densities $\delta_{q;a,b}$ New phenomena
 Dependence on q Dependence on a and b Other highlights

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Example: races modulo 24

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 24

0.999987
0.999983
0.999889
0.999833
0.999719
0.999125
0.998722

 Introduction
 The densities $\delta_{q;a,b}$ New phenomena
 Dependence on q Dependence on a and b Other highlights

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Example: races modulo 24

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 24

a	$\delta_{24;a,1}$
5	0.999987
11	0.999983
23	0.999889
7	0.999833
19	0.999719
17	0.999125
13	0.998722

Introduction
000The densities $\delta_{q;a,b}$
 $0 \bullet 00$ New phenomena
 $0 \bullet 00$ Dependence on q
 $0 \bullet 00$ Dependence on a and b
 $0 \bullet 000$ Other highlights
 $0 \bullet 000$

Example: races modulo 24

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 24

a	$\delta_{24;a,1}$
5	0.999987
11	0.999983
23	0.999889
7	0.999833
19	0.999719
17	0.999125
13	0.998722

 Introduction
 The densities $\delta_{q;a,b}$ New phenomena
 Dependence on q Dependence on a and b Other highlights

 0000
 0000
 0000
 0000
 0000
 0000
 0000

Example: races modulo 24

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 24

a	$\delta_{24;a,1}$
5	0.999987
11	0.999983
23	0.999889
7	0.999833
19	0.999719
17	0.999125
13	0.998722

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 43

$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$
	0.5743		0.5672
	0.5742		0.5670
	0.5729		0.5663
	0.5728		0.5639
	0.5700		0.5607
	0.5700		

δ_{q;a,b} = δ_{q;ab⁻¹,1} for any square b (mod q). Thus it suffices to calculate only the values of δ_{q;a,1} for nonsquares a (mod q).
δ_{q;a,1} = δ_{q;a⁻¹,1} for any a (mod q).

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 43

а	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$
32	39	0.5743	5	26	0.5672
30	33	0.5742	7	37	0.5670
12	18	0.5729	2	22	0.5663
20	28	0.5728	3	29	0.5639
19	34	0.5700	42	42	0.5607
8	27	0.5700			

δ_{q;a,b} = δ_{q;ab⁻¹,1} for any square b (mod q). Thus it suffices to calculate only the values of δ_{q;a,1} for nonsquares a (mod q).
 δ_{q;a,1} = δ_{q;a⁻¹,1} for any a (mod q).



 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 43

а	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$
32	39	0.5743	5	26	0.5672
30	33	0.5742	7	37	0.5670
12	18	0.5729	2	22	0.5663
20	28	0.5728	3	29	0.5639
19	34	0.5700	42	42	0.5607
8	27	0.5700			

δ_{q;a,b} = δ_{q;ab⁻¹,1} for any square b (mod q). Thus it suffices to calculate only the values of δ_{q;a,1} for nonsquares a (mod q).
 δ_{q;a,1} = δ_{q;a⁻¹,1} for any a (mod q).



 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 43

а	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$
32	39	0.5743	5	26	0.5672
30	33	0.5742	7	37	0.5670
12	18	0.5729	2	22	0.5663
20	28	0.5728	3	29	0.5639
19	34	0.5700	42	42	0.5607
8	27	0.5700			

δ_{q;a,b} = δ_{q;ab⁻¹,1} for any square b (mod q). Thus it suffices to calculate only the values of δ_{q;a,1} for nonsquares a (mod q).
δ_{q;a,1} = δ_{q;a⁻¹,1} for any a (mod q).

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Example: races modulo 43

а	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$
32	39	0.5743	5	26	0.5672
30	33	0.5742	7	37	0.5670
12	18	0.5729	2	22	0.5663
20	28	0.5728	3	29	0.5639
19	34	0.5700	42	42	0.5607
8	27	0.5700			

δ_{q;a,b} = δ_{q;ab⁻¹,1} for any square b (mod q). Thus it suffices to calculate only the values of δ_{q;a,1} for nonsquares a (mod q).
δ_{q;a,1} = δ_{q;a⁻¹,1} for any a (mod q).

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Curre	nt goals				

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on a and b	Other highlights
Curre	nt goals				

Current goals

• A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.

• A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Introduction	The densities $\delta_{q;a,b}$	New phenomena 000●	Dependence on q	Dependence on a and b	Other highlights
Curre	nt goals				

Current goals

• A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.

• A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena 000●	Dependence on q	Dependence on a and b	Other highlights	
Currer	nt goals					

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena 000●	Dependence on q	Dependence on a and b	Other highlights	
Currer	nt goals					

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q••••• Dependence on *a* and *b* 0000000

Other highlights

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{2\sqrt{\pi} \left(\phi(q)\log q\right)^{1/2}} + O\left(\frac{\rho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}\right)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 (mod q)}$ $= 2^{\#\text{number of odd prime factors of q} \times \{1, 2, \text{ or } 4\}$

Dependence on *a* and *b* 0000000

Other highlights

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{2\sqrt{\pi} \, (\phi(q)\log q)^{1/2}} + O\!\left(\frac{\rho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}\right)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 (mod q)}$ $= 2^{\#\text{number of odd prime factors of }q} \times \{1, 2, \text{ or } 4\}$

IntroductionThe densities $\delta_{q;a,b}$ New phenomenaDependence on qDependence on a and b000000000000000000000

the on a and b Other highlights

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{2\sqrt{\pi} \, (\phi(q)\log q)^{1/2}} + O\!\left(rac{
ho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}
ight)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 (mod q)}$ $= 2^{\#\text{number of odd prime factors of }q} \times \{1, 2, \text{ or } 4\}$

Dependence on *a* and *b* 0000000

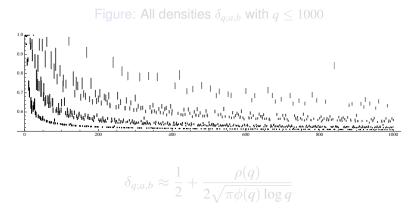
Other highlights

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then


$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{2\sqrt{\pi} \, (\phi(q)\log q)^{1/2}} + O\!\left(\frac{\rho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}\right)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 (mod q)}$ $= 2^{\#\text{number of odd prime factors of } q} \times \{1, 2, \text{ or } 4\}$

We have a full asymptotic series for $\delta(q; a, b)$, allowing us to compute the densities rapidly for $\phi(q) > 80$, say (which is when the numerical integration technique becomes worse).

We have a full asymptotic series for $\delta(q; a, b)$, allowing us to compute the densities rapidly for $\phi(q) > 80$, say (which is when the numerical integration technique becomes worse).

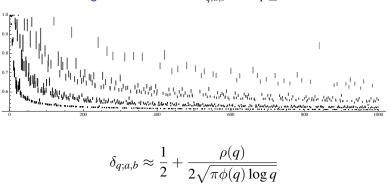


Figure: All densities $\delta_{q;a,b}$ with $q \leq 1000$

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q 0000	Dependence on a and b	Other highlights
Our a	pproach				

• For given q, a, b, the normalized difference

$$\Delta_{q;a,b}(x) = \left(\frac{\phi(q)}{2\log q}\right)^{1/2} \frac{\pi(x;q,a) - \pi(x;q,b)}{x^{1/2}/\log x}$$

has a limiting distribution function

$$F_{q;a,b}(u) = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 < x < T \\ \Delta_{a;a,b}(x) < u}} \frac{dx}{x} \right)$$

• Rubinstein–Sarnak: As $q \to \infty$, these distribution functions converge to the standard normal distribution with variance 1.

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q 0000	Dependence on a and b	Other highlights
Our a	nnroach				

• For given q, a, b, the normalized difference

$$\Delta_{q;a,b}(x) = \left(\frac{\phi(q)}{2\log q}\right)^{1/2} \frac{\pi(x;q,a) - \pi(x;q,b)}{x^{1/2}/\log x}$$

has a limiting distribution function

$$F_{q;a,b}(u) = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 < x < T \\ \Delta_{q;a,b}(x) < u}} \frac{dx}{x} \right).$$

 Rubinstein–Sarnak: As q → ∞, these distribution functions converge to the standard normal distribution with variance 1.

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q 0000	Dependence on a and b	Other highlights
Our a	nnroach				

• For given q, a, b, the normalized difference

$$\Delta_{q;a,b}(x) = \left(\frac{\phi(q)}{2\log q}\right)^{1/2} \frac{\pi(x;q,a) - \pi(x;q,b)}{x^{1/2}/\log x}$$

has a limiting distribution function

$$F_{q;a,b}(u) = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 < x < T \\ \Delta_{q;a,b}(x) < u}} \frac{dx}{x} \right).$$

 Rubinstein–Sarnak: As q → ∞, these distribution functions converge to the standard normal distribution with variance 1.

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q 0000	Dependence on a and b	Other highlights
Our a	nnroach				

• For given q, a, b, the normalized difference

$$\Delta_{q;a,b}(x) = \left(\frac{\phi(q)}{2\log q}\right)^{1/2} \frac{\pi(x;q,a) - \pi(x;q,b)}{x^{1/2}/\log x}$$

has a limiting distribution function

$$F_{q;a,b}(u) = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 < x < T \\ \Delta_{q;a,b}(x) < u}} \frac{dx}{x} \right).$$

• Rubinstein–Sarnak: As $q \to \infty$, these distribution functions converge to the standard normal distribution with variance 1.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q 000 \bullet	Dependence on a and b	Other highlights	
A few	ugly detail	s				

The density $\delta_{q;a,b}$, in terms of the Fourier transform of $F_{q;a,b}$:

$$\delta_{q;a,b} - \frac{1}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{\sin(\rho(q)t)}{t} \times \prod_{\substack{\chi \pmod{q} \\ L(1/2+i\gamma,\chi)=0}} J_0\left(\frac{2|\chi(a)-\chi(b)|t}{\sqrt{1/4+\gamma^2}}\right) dt \right\}$$

Truncate the right-hand side and rewrite as

$$\sim \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \exp\left(-V(q;a,b)t^2/2\right) \exp\left(V_4 t^4 + V_6 t^6 + \cdots\right) \frac{\sin(\rho(q)t)}{t} dt.$$

Expand everything but the first factor into power series and integrate term by term to obtain an asymptotic series.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q 000 \bullet	Dependence on a and b	Other highlights
A few	ualv detail	s			

The density $\delta_{q;a,b}$, in terms of the Fourier transform of $F_{q;a,b}$:

$$\delta_{q;a,b} - \frac{1}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{\sin(\rho(q)t)}{t} \times \prod_{\substack{\chi \pmod{q} \\ L(1/2+i\gamma,\chi)=0}} J_0\left(\frac{2|\chi(a)-\chi(b)|t}{\sqrt{1/4+\gamma^2}}\right) dt \right\}$$

Truncate the right-hand side and rewrite as

$$\sim \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \exp\left(-V(q;a,b)t^2/2\right) \exp\left(V_4 t^4 + V_6 t^6 + \cdots\right) \frac{\sin(\rho(q)t)}{t} dt.$$

Expand everything but the first factor into power series and integrate term by term to obtain an asymptotic series.

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q 000 \bullet	Dependence on a and b	Other highlights	
A few	ualv detail	s				

The density $\delta_{q;a,b}$, in terms of the Fourier transform of $F_{q;a,b}$:

$$\delta_{q;a,b} - \frac{1}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{\sin(\rho(q)t)}{t} \\ \times \prod_{\chi \pmod{q}} \prod_{\substack{\gamma > 0 \\ L(1/2 + i\gamma, \chi) = 0}} J_0 \left(\frac{2|\chi(a) - \chi(b)|t}{\sqrt{1/4 + \gamma^2}} \right) dt \right\}$$

Truncate the right-hand side and rewrite as

$$\sim \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \exp\left(-V(q;a,b)t^2/2\right) \exp\left(V_4t^4 + V_6t^6 + \cdots\right) \frac{\sin(\rho(q)t)}{t} dt.$$

Expand everything but the first factor into power series and integrate term by term to obtain an asymptotic series.

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q 000 \bullet	Dependence on a and b	Other highlights
A few	ualv detai	s			

The density $\delta_{q;a,b}$, in terms of the Fourier transform of $F_{q;a,b}$:

$$\delta_{q;a,b} - \frac{1}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left\{ \frac{\sin(\rho(q)t)}{t} \times \prod_{\substack{\chi \pmod{q} \\ L(1/2+i\gamma,\chi)=0}} J_0\left(\frac{2|\chi(a) - \chi(b)|t}{\sqrt{1/4 + \gamma^2}}\right) dt \right\}$$

Truncate the right-hand side and rewrite as

$$\sim \frac{1}{2\pi} \int_{-\alpha}^{\alpha} \exp\left(-V(q;a,b)t^2/2\right) \exp\left(V_4 t^4 + V_6 t^6 + \cdots\right) \frac{\sin(\rho(q)t)}{t} dt.$$

Expand everything but the first factor into power series and integrate term by term to obtain an asymptotic series.

troduction The densities $\delta_{q;a,b}$ New phenomena

Dependence on q

Dependence on a and b

Other highlights

Asymptotic formula, version II

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\bigg(\frac{1}{\phi(q)\log q}\bigg),$$

where

$$V(q; a, b) = 2 \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} .$$

boduction The densities $\delta_{q;a,b}$ New p 000 000 000

New phenomena

 $\begin{array}{c} \text{Dependence on } q \\ \text{oooo} \end{array}$

Dependence on a and b

Other highlights

Asymptotic formula, version II

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\bigg(\frac{1}{\phi(q)\log q}\bigg),$$

where

$$V(q; a, b) = 2 \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{\frac{1}{4} + \gamma^2}} .$$

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on a and b

Other highlights

Asymptotic formula, version III

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\begin{split} \delta_{q;a,b} &= \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\left(\frac{1}{\phi(q)\log q}\right), \text{ where} \\ V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b)\right) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on a and b

Other highlights

Asymptotic formula, version III

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

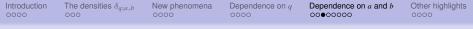
$$\begin{split} \delta_{q;a,b} &= \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\bigg(\frac{1}{\phi(q)\log q}\bigg), \text{ where} \\ V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b)\bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on a and b


Other highlights

Asymptotic formula, version III

Theorem (Fiorilli and M., 2010+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\begin{split} \delta_{q;a,b} &= \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\left(\frac{1}{\phi(q)\log q}\right), \text{ where} \\ V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b)\right) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

Three terms depending on *a* and *b*

The variance, evaluated

$$\begin{split} V(q;a,b) &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

• γ_0 = Euler's constant: $\lim_{x\to\infty} \left(\sum_{n < x} \frac{1}{n} - \log x\right) \approx 0.577216$

There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O\left(\frac{1}{\phi(q)\log q}\right) \text{ to decrease.}$

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

• $\gamma_0 = \text{Euler's constant: } \lim_{x \to \infty} \left(\sum_{n \le x} \frac{1}{n} - \log x \right) \approx 0.577216$ There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O\left(\frac{1}{\phi(q) \log q}\right)$ to decrease.

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

• $\gamma_0 = \text{Euler's constant: } \lim_{x\to\infty} \left(\sum_{n\leq x} \frac{1}{n} - \log x\right) \approx 0.577216$ There are three terms in this formula for the variance V(q; a, b) that depend on *a* and *b*. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(a; a, b)}} + O\left(\frac{1}{\phi(q)\log a}\right)$ to decrease.

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

• $\gamma_0 = \text{Euler's constant: } \lim_{x \to \infty} \left(\sum_{n \le x} \frac{1}{n} - \log x \right) \approx 0.577216$

There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O\left(\frac{1}{\phi(q)\log q}\right) \text{ to decrease.}$

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

•
$$R_q(n) = \frac{\Lambda(q/(q,n))}{\phi(q/(q,n))}$$

•
$$\iota_q(n) = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{q}, \\ 0, & \text{if } n \not\equiv 1 \pmod{q} \end{cases}$$

• If χ^* is the primitive character that induces χ , then

$$M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$$

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + \mathbf{R}_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

•
$$R_q(n) = \frac{\Lambda(q/(q, n))}{\phi(q/(q, n))}$$

• $\iota_q(n) = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{q}, \\ 0, & \text{if } n \not\equiv 1 \pmod{q} \end{cases}$
• If χ^* is the primitive character that induces χ , the
 $M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

•
$$R_q(n) = \frac{\Lambda(q/(q,n))}{\phi(q/(q,n))}$$

•
$$\iota_q(n) = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{q}, \\ 0, & \text{if } n \not\equiv 1 \pmod{q} \end{cases}$$

• If χ^* is the primitive character that induces χ , then

$$M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$$

Three terms depending on *a* and *b*

The variance, evaluated

$$V(q; a, b) = 2\phi(q) \left(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \right) + (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q; a, b).$$

•
$$R_q(n) = \frac{\Lambda(q/(q,n))}{\phi(q/(q,n))}$$

•
$$\iota_q(n) = \begin{cases} 1, & \text{if } n \equiv 1 \pmod{q}, \\ 0, & \text{if } n \not\equiv 1 \pmod{q} \end{cases}$$

• If χ^* is the primitive character that induces χ , then

$$M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$$

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i> 0000€000	Other highlights		
The effect of R _a							

$$R_q(a-b) = \frac{\Lambda(q/(q,a-b))}{\phi(q/(q,a-b))}$$

provides extra variance (reducing the corresponding density $\delta_{q;a,b}$) if *a* is congruent to *b* modulo suitable large divisors of *q*.

$\delta_{24;a,1}$	24/(24, a-1)	$R_{24}(a-1)$
0.999987	6	
0.999983	12	
0.999889	12	
0.999833	4	$(\log 2)/2$
0.999719	4	$(\log 2)/2$
0.999125	3	$(\log 3)/2$
0.998722	2	log 2

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i> 0000€000	Other highlights
The e	ffect of R_q				

$$R_q(a-b) = \frac{\Lambda(q/(q,a-b))}{\phi(q/(q,a-b))}$$

provides extra variance (reducing the corresponding density $\delta_{q;a,b}$) if *a* is congruent to *b* modulo suitable large divisors of *q*.

а	$\delta_{24;a,1}$	24/(24, a-1)	$R_{24}(a-1)$
5	0.999987	6	0
11	0.999983	12	0
23	0.999889	12	0
7	0.999833	4	$(\log 2)/2$
19	0.999719	4	$(\log 2)/2$
17	0.999125	3	$(\log 3)/2$
13	0.998722	2	log 2

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i> 0000€000	Other highlights		
The effect of R _a							

$$R_q(a-b) = \frac{\Lambda(q/(q,a-b))}{\phi(q/(q,a-b))}$$

provides extra variance (reducing the corresponding density $\delta_{q;a,b}$) if *a* is congruent to *b* modulo suitable large divisors of *q*.

а	$\delta_{24;a,1}$	24/(24, a-1)	$R_{24}(a-1)$
5	0.999987	6	0
11	0.999983	12	0
23	0.999889	12	0
7	0.999833	4	$(\log 2)/2$
19	0.999719	4	$(\log 2)/2$
17	0.999125	3	$(\log 3)/2$
13	0.998722	2	log 2

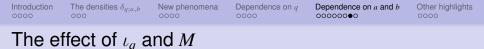
Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i>	Other highlights		
The effect of ι_q and M							

•
$$\iota_q(-ab^{-1}) = \begin{cases} 1, & \text{if } -ab^{-1} \equiv 1 \pmod{q}, \\ 0, & \text{if } -ab^{-1} \not\equiv 1 \pmod{q} \end{cases}$$

• $M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$

- $\iota_q(-ab^{-1})$ provides extra variance exactly when $a \equiv -b \pmod{q}$.
- It can be shown that M(q; a, b) tends to provide extra variance when there are small prime powers congruent to ab⁻¹ or ba⁻¹ modulo q. (Note: it's a bit more complicated to state when q is not an odd prime power.)

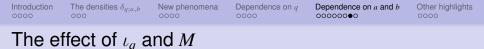
Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i>	Other highlights		
The effect of ι_q and M							


•
$$\iota_q(-ab^{-1}) = \begin{cases} 1, & \text{if } -ab^{-1} \equiv 1 \pmod{q}, \\ 0, & \text{if } -ab^{-1} \not\equiv 1 \pmod{q} \end{cases}$$

• $M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$

- $\iota_q(-ab^{-1})$ provides extra variance exactly when $a \equiv -b \pmod{q}$.
- It can be shown that M(q; a, b) tends to provide extra variance when there are small prime powers congruent to ab⁻¹ or ba⁻¹ modulo q. (Note: it's a bit more complicated to state when q is not an odd prime power.)

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on <i>a</i> and <i>b</i>	Other highlights		
The effect of ι_q and M							

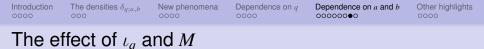

•
$$\iota_q(-ab^{-1}) = \begin{cases} 1, & \text{if } -ab^{-1} \equiv 1 \pmod{q}, \\ 0, & \text{if } -ab^{-1} \not\equiv 1 \pmod{q} \end{cases}$$

• $M(q; a, b) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(a) - \chi(b)|^2 \frac{L'(1, \chi^*)}{L(1, \chi^*)}$

- $\iota_q(-ab^{-1})$ provides extra variance exactly when $a \equiv -b \pmod{q}$.
- It can be shown that M(q; a, b) tends to provide extra variance when there are small prime powers congruent to ab⁻¹ or ba⁻¹ modulo q. (Note: it's a bit more complicated to state when q is not an odd prime power.)

- $\iota_q(-a)$ provides extra variance (hence decreases $\delta_{q;a,1}$) exactly when $a \equiv -1 \pmod{q}$.
- It can be shown that M(q; a, 1) tends to provide extra variance (hence decreases $\delta_{q;a,1}$) when there are small prime powers congruent to *a* or a^{-1} modulo *q*.

$a^{-1} \pmod{43}$	$\delta_{43;a,1}$		$a^{-1} \pmod{43}$	$\delta_{43;a,1}$			
	0.5743			0.5672			
	0.5742			0.5670			
	0.5729			0.5663			
	0.5728			0.5639			
	0.5700			0.5607			
	0.5700						


- $\iota_q(-a)$ provides extra variance (hence decreases $\delta_{q;a,1}$) exactly when $a \equiv -1 \pmod{q}$.
- It can be shown that M(q; a, 1) tends to provide extra variance (hence decreases $\delta_{q;a,1}$) when there are small prime powers congruent to *a* or a^{-1} modulo *q*.

Example: races modulo 43							
a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$		
32	39	0.5743	5	26	0.5672		
30	33	0.5742	7	37	0.5670		
12	18	0.5729	2	22	0.5663		
20	28	0.5728	3	29	0.5639		
19	34	0.5700	42	42	0.5607		
8	27	0.5700					

Introduction	The densities $\delta_{q;a,b}$	New phenomena	Dependence on q	Dependence on a and b 000000 \bullet 0	Other highlights		
The effect of ι_a and M							

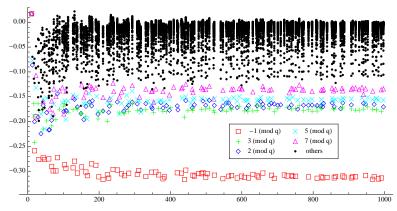
- $\iota_q(-a)$ provides extra variance (hence decreases $\delta_{q;a,1}$) exactly when $a \equiv -1 \pmod{q}$.
- It can be shown that M(q; a, 1) tends to provide extra variance (hence decreases $\delta_{q;a,1}$) when there are small prime powers congruent to *a* or a^{-1} modulo *q*.

Example: races modulo 43						
a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	
32	39	0.5743	5	26	0.5672	
30	33	0.5742	7	37	0.5670	
12	18	0.5729	2	22	0.5663	
20	28	0.5728	3	29	0.5639	
19	34	0.5700	42	42	0.5607	
8	27	0.5700				

- $\iota_q(-a)$ provides extra variance (hence decreases $\delta_{q;a,1}$) exactly when $a \equiv -1 \pmod{q}$.
- It can be shown that M(q; a, 1) tends to provide extra variance (hence decreases $\delta_{q;a,1}$) when there are small prime powers congruent to *a* or a^{-1} modulo *q*.

Example: races modulo 43						
а	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	a	$a^{-1} \pmod{43}$	$\delta_{43;a,1}$	
32	39	0.5743	5	26	0.5672	
30	33	0.5742	7	37	0.5670	
12	18	0.5729	2	22	0.5663	
20	28	0.5728	3	29	0.5639	
19	34	0.5700	42	42	0.5607	
8	27	0.5700				

ction The densities $\delta_{q;a,b}$ New phenomena 000


a Dependence on q

Dependence on a and b

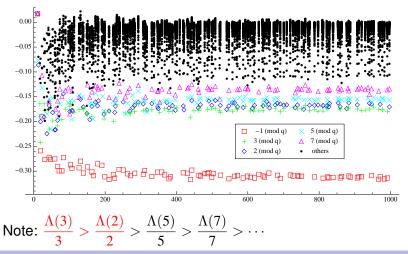
Other highlights

Graph of normalized densities

Figure: Densities $\delta_{q;a,1}$ for primes q, after a normalization to display them at the same scale

 $\begin{array}{c} \mbox{ction} & \mbox{The densities } \delta_{q;a,b} & \mbox{New phenomena} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

omena Depeno 0000


Dependence on q

Dependence on a and b 0000000

Other highlights

Graph of normalized densities

Figure: Densities $\delta_{q;a,1}$ for primes q, after a normalization to display them at the same scale

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q	Dependence on a and b	Other highlights •ooo
- -	1				

Top Ten List

Top 10 Most Unfair Races					
Modulus q	Winner a	Loser b	Proportion $\delta_{q;a,b}$		
24		1	99.9987%		
24		1	99.9982%		
12		1	99.9976%		
24		1	99.9888%		
24		1	99.9833%		
24		1	99.9718%		
		1	99.9568%		
12		1	99.9206%		
24		1	99.9124%		
3		1	99.9064%		

There are 117 distinct densities greater than 9/10 (the last one is $\delta_{56;37,1} = 0.900863$).

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q	Dependence on a and b	Other highlights •ooo
Top Te	en List				

Top 10 Most Unfair Races					
Modulus	q Winner a	Loser b	Proportion $\delta_{q;a,b}$		
24	5	1	99.9987%		
24	11	1	99.9982%		
12	11	1	99.9976%		
24	23	1	99.9888%		
24	7	1	99.9833%		
24	19	1	99.9718%		
8	3	1	99.9568%		
12	5	1	99.9206%		
24	17	1	99.9124%		
3	2	1	99.9064%		

There are 117 distinct densities greater than 9/10 (the last one is $\delta_{56;37,1} = 0.900863$).

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q	Dependence on a and b	Other highlights •ooo
Top Te	en List				

Top 10 Most Unfair Races					
Modulus q	Winner a	Loser b	Proportion $\delta_{q;a,b}$		
24	5	1	99.9987%		
24	11	1	99.9982%		
12	11	1	99.9976%		
24	23	1	99.9888%		
24	7	1	99.9833%		
24	19	1	99.9718%		
8	3	1	99.9568%		
12	5	1	99.9206%		
24	17	1	99.9124%		
3	2	1	99.9064%		

There are 117 distinct densities greater than 9/10 (the last one is $\delta_{56;37,1} = 0.900863$).

Introduction oco The densities $\delta_{q;a,b}$ New phenomena Dependence on q Dependence on a and b Other highlights oco $\circ \circ \circ \circ$

Races with more than two contestants

Definition

Define $\delta_{q;a_1,...,a_r}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying

 $\pi(x;q,a_1) > \pi(x;q,a_2) > \cdots > \pi(x;q,a_r).$

(*)

Under GRH and LI, Rubinstein and Sarnak proved:

- $\delta_{q;a_1,...,a_r}$ always exists and is strictly between 0 and 1
- $\delta_{q;a_1,\ldots,a_r}$ tends to $\frac{1}{r!}$ as q tends to infinity, uniformly for all distinct residue classes a_1,\ldots,a_r .

Introduction
000The densities $\delta_{q;a,b}$ New phenomena
000Dependence on q
000Dependence on a and b
0000Other highlights
00000000

Races with more than two contestants

Definition

Define $\delta_{q;a_1,...,a_r}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying

 $\pi(x;q,a_1) > \pi(x;q,a_2) > \cdots > \pi(x;q,a_r).$

(*)

Under GRH and LI, Rubinstein and Sarnak proved:

- $\delta_{q;a_1,...,a_r}$ always exists and is strictly between 0 and 1
- $\delta_{q;a_1,...,a_r}$ tends to $\frac{1}{r!}$ as q tends to infinity, uniformly for all distinct residue classes a_1, \ldots, a_r .

IntroductionThe densities $\delta_{q;a,b}$ New phenomenaDependence on qDependence on a and bOther highlights000000000000000000000

Races with more than two contestants

Definition

Define $\delta_{q;a_1,...,a_r}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying

 $\pi(x;q,a_1) > \pi(x;q,a_2) > \cdots > \pi(x;q,a_r).$

(*)

Definition

The prime number race among *r* distinct residue classes $A \pmod{q}$ is *inclusive* if, for any permutation (a_1, \ldots, a_r) of *A*, the simultaneous inequalities (*) hold for a set of positive logarithmic density.

In particular, for inclusive prime number races, the inequalities (*) will hold on an unbounded set of real numbers x for any permutation of (a_1, \ldots, a_r) .

IntroductionThe densities $\delta_{q;a,b}$ New phenomenaDependence on qDependence on a and bOther highlights000000000000000000000

Races with more than two contestants

Definition

Define $\delta_{q;a_1,...,a_r}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying

 $\pi(x;q,a_1) > \pi(x;q,a_2) > \cdots > \pi(x;q,a_r).$

(*)

Definition

The prime number race among *r* distinct residue classes $A \pmod{q}$ is *inclusive* if, for any permutation (a_1, \ldots, a_r) of *A*, the simultaneous inequalities (*) hold for a set of positive logarithmic density.

In particular, for inclusive prime number races, the inequalities (\star) will hold on an unbounded set of real numbers *x* for any permutation of (a_1, \ldots, a_r) .

Introduction

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on *a* and *b* 0000000

Other highlights

Weakening the linear independence assumption

Rubinstein and Sarnak: assuming GRH and LI, every prime number race is inclusive.

Theorem (M. and Ng, 2010+)

Assume GRH. Every prime number race $(\mod q)$ is inclusive if every nonprincipal Dirichlet L-function $(\mod q)$ has $\gg T/\log T$ zeros up to height T (as $T \to \infty$) that are not involved in any linear relations among the zeros.

- We only need $\sum \frac{1}{\gamma}$, summed over such zeros for a given *L*-function, to diverge.
- We only need this for "enough" characters χ_j to distinguish the contestants a₁,..., a_r, that is, C^r must be spanned by

$$\left\{\left(\chi_j(a_1),\ldots,\chi_j(a_r)\right)\right\}\cup(1,\ldots,1).$$

Introduction 0000 The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on *a* and *b* 0000000

Other highlights

Weakening the linear independence assumption

Rubinstein and Sarnak: assuming GRH and LI, every prime number race is inclusive.

Theorem (M. and Ng, 2010+)

Assume GRH. Every prime number race (mod *q*) is inclusive if every nonprincipal Dirichlet *L*-function (mod *q*) has $\gg T/\log T$ zeros up to height *T* (as $T \to \infty$) that are not involved in any linear relations among the zeros.

- We only need $\sum \frac{1}{\gamma}$, summed over such zeros for a given *L*-function, to diverge.
- We only need this for "enough" characters χ_j to distinguish the contestants a_1, \ldots, a_r , that is, \mathbb{C}^r must be spanned by

$$\left\{\left(\chi_j(a_1),\ldots,\chi_j(a_r)\right)\right\}\cup(1,\ldots,1).$$

Introduction

The densities $\delta_{q;a,b}$ 000

New phenomena

Dependence on q

Dependence on *a* and *b* 0000000

Other highlights

Weakening the linear independence assumption

Rubinstein and Sarnak: assuming GRH and LI, every prime number race is inclusive.

Theorem (M. and Ng, 2010+)

Assume GRH. Every prime number race $(\mod q)$ is inclusive if every nonprincipal Dirichlet L-function $(\mod q)$ has $\gg T/\log T$ zeros up to height T (as $T \to \infty$) that are not involved in any linear relations among the zeros.

- We only need Σ ¹/_γ, summed over such zeros for a given *L*-function, to diverge.
- We only need this for "enough" characters χ_j to distinguish the contestants a₁,..., a_r, that is, C^r must be spanned by

 $\left\{\left(\chi_j(a_1),\ldots,\chi_j(a_r)\right)\right\}\cup(1,\ldots,1).$

ntroduction

The densities $\delta_{q;a,b}$

New phenomena

Dependence on q

Dependence on *a* and *b* 0000000

Other highlights

Weakening the linear independence assumption

Rubinstein and Sarnak: assuming GRH and LI, every prime number race is inclusive.

Theorem (M. and Ng, 2010+)

Assume GRH. Every prime number race $(\mod q)$ is inclusive if every nonprincipal Dirichlet L-function $(\mod q)$ has $\gg T/\log T$ zeros up to height T (as $T \to \infty$) that are not involved in any linear relations among the zeros.

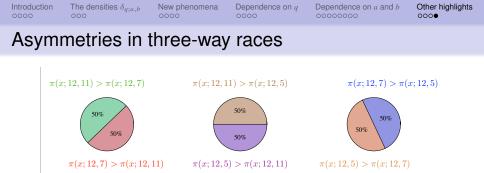
- We only need Σ ¹/_γ, summed over such zeros for a given L-function, to diverge.
- We only need this for "enough" characters χ_j to distinguish the contestants a₁,..., a_r, that is, C^r must be spanned by

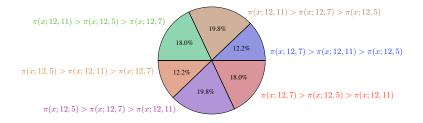
 $\left\{\left(\chi_j(a_1),\ldots,\chi_j(a_r)\right)\right\}\cup(1,\ldots,1).$

Introduction The densities $\delta_{q;a,b}$ New phenomena Dependence on q Dependence on a and b Other highlights occorrect on δ_{000} Other highlights occorrect on a and b occorrec

Prime number races: An asymptotic formula for the densities

50%


50%


50% $\pi(x; 12, 5) > \pi(x; 12, 11)$

50%

50%

 $\pi(x; 12, 7) > \pi(x; 12, 11) \qquad \qquad \pi(x; 12, 5) > \pi(x; 12, 11) \qquad \qquad \pi(x; 12, 5) > \pi(x; 12, 7)$

Introduction	The densities $\delta_{q;a,b}$ 000	New phenomena	Dependence on q	Dependence on a and b	Other highlights	
The e	end					

The survey article *Prime number races*, with Andrew Granville

www.math.ubc.ca/~gerg/index.shtml?abstract=PNR

My paper with Daniel (and pointers to other papers)

www.math.ubc.ca/~gerg/

index.shtml?abstract=ISRPNRAFD

These slides

www.math.ubc.ca/~gerg/index.shtml?slides