Friable values of polynomials

How often do the values of a polynomial have only small prime factors?

Greg Martin
University of British Columbia

April 14, 2006
University of South Carolina Number Theory Seminar
notes to be placed on web page:
www.math.ubc.ca/~gerg/talks.html

Outline

Friable values of
polynomials
Greg Martin

Introduction

Friable integers
Friable values of polynomials
(9) Introduction
(2) Bounds for friable values of polynomials
(3) Conjecture for prime values of polynomials
4. Conjecture for friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How triable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
(1) Introduction

- Friable integers
- Friable numbers among values of polynomials
(2) Bounds for friable values of polynomials
(3) Conjecture for prime values of polynomials

4. Conjecture for friable values of polynomials

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Friable integers

Friable values of
polynomials
Greg Martin
Definition
$\Psi(x, y)$ is the number of integers up to x whose prime factors are all at most y :

$$
\Psi(x, y)=\#\{n \leq x: p \mid n \Longrightarrow p \leq y\}
$$

Asymptotics:

$$
\begin{aligned}
& \text { For a large range of } x \text { and } y \text {, } \\
& \qquad \psi(x, y) \sim x p\left(\frac{\log x}{\log y}\right) \\
& \text { where } \rho(u) \text { is the "Dickman-de Bruijn } \\
& \text { rho-function". }
\end{aligned}
$$

Interpretation: A "randomly chosen" integer of size X has probability $\rho(u)$ of being $X^{1 / u}$-friable.
In this talk: Think of $u=\log x / \log y$ as being bounded above, that is, $y \geq x^{\varepsilon}$ for some $\varepsilon>0$.

Friable integers

Definition

$\Psi(x, y)$ is the number of integers up to x whose prime factors are all at most y :

$$
\Psi(x, y)=\#\{n \leq x: p \mid n \Longrightarrow p \leq y\}
$$

Asymptotics: For a large range of x and y,

$$
\psi(x, y) \sim x \rho\left(\frac{\log x}{\log y}\right)
$$

where $\rho(u)$ is the "Dickman-de Bruijn rho-function".

Interpretation: A "randomly chosen" integer of size X has probability $\rho(u)$ of being $X^{1 / u}$-friable.

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Friable integers

Definition

$\Psi(x, y)$ is the number of integers up to x whose prime factors are all at most y :

$$
\Psi(x, y)=\#\{n \leq x: p \mid n \Longrightarrow p \leq y\}
$$

Asymptotics: For a large range of x and y,

$$
\psi(x, y) \sim x \rho\left(\frac{\log x}{\log y}\right)
$$

where $\rho(u)$ is the "Dickman-de Bruijn rho-function".

Interpretation: A "randomly chosen" integer of size X has probability $\rho(u)$ of being $X^{1 / u}$-friable.

In this talk: Think of $u=\log x / \log y$ as being bounded above, that is, $y \geq x^{\varepsilon}$ for some $\varepsilon>0$.

The Dickman-de Bruijn ρ-function

Definition

$\rho(u)$ is the unique continuous solution of the differential-difference equation $u \rho^{\prime}(u)=-\rho(u-1)$ for $u \geq 1$ that satisfies the initial condition $\rho(u)=1$ for $0 \leq u \leq 1$.

Example

Since $\rho(u)=1$, we have $\rho(u)=1-\log u$ for $1 \leq u \leq 2$.

The Dickman-de Bruijn ρ-function

Definition

$\rho(u)$ is the unique continuous solution of the differential-difference equation $u \rho^{\prime}(u)=-\rho(u-1)$ for $u \geq 1$ that satisfies the initial condition $\rho(u)=1$ for $0 \leq u \leq 1$.

Example

For $1 \leq u \leq 2$,

$$
\rho^{\prime}(u)=-\frac{\rho(u-1)}{u}=-\frac{1}{u} \Longrightarrow \rho(u)=C-\log u .
$$

Since $\rho(u)=1$, we have $\rho(u)=1-\log u$ for $1 \leq u \leq 2$.

The Dickman-de Bruijn ρ-function

Definition

$\rho(u)$ is the unique continuous solution of the differential-difference equation $u \rho^{\prime}(u)=-\rho(u-1)$ for $u \geq 1$ that satisfies the initial condition $\rho(u)=1$ for $0 \leq u \leq 1$.

Example

For $1 \leq u \leq 2$,

$$
\rho^{\prime}(u)=-\frac{\rho(u-1)}{u}=-\frac{1}{u} \Longrightarrow \rho(u)=C-\log u
$$

Since $\rho(u)=1$, we have $\rho(u)=1-\log u$ for $1 \leq u \leq 2$.

Consequence: Note that $\rho(u)=\frac{1}{2}$ when $u=\sqrt{e}$. Therefore the "median size" of the largest prime factor of n is $n^{1 / \sqrt{e}}$.

Friable numbers among values of polynomials

Definition

$\Psi(F ; x, y)$ is the number of integers n up to x such that all the prime factors of $F(n)$ are all at most y :

$$
\Psi(F ; x, y)=\#\{1 \leq n \leq x: p \mid F(n) \Longrightarrow p \leq y\}
$$

- When $F(x)$ is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic $\psi(F ; x, y) \sim \rho\left(\frac{\log x}{\log y}\right)$
- Knowing the size of $\Psi(F ; x, y)$ has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve).
- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?

Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture) A uniform version of Hypothesis H

Conjecture for friable

 values of polynomialsStatement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

Friable numbers among values of polynomials

Definition

$\Psi(F ; x, y)$ is the number of integers n up to x such that all the prime factors of $F(n)$ are all at most y :

$$
\Psi(F ; x, y)=\#\{1 \leq n \leq x: p \mid F(n) \Longrightarrow p \leq y\}
$$

- When $F(x)$ is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic $\Psi(F ; x, y) \sim \rho\left(\frac{\log x}{\log y}\right)$.
- Knowing the size of $\Psi(F ; x, y)$ has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve)
- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?

Friable numbers among values of polynomials

Definition

$\Psi(F ; x, y)$ is the number of integers n up to x such that all the prime factors of $F(n)$ are all at most y :

$$
\Psi(F ; x, y)=\#\{1 \leq n \leq x: p \mid F(n) \Longrightarrow p \leq y\}
$$

- When $F(x)$ is a linear polynomial (friable numbers in arithmetic progressions), we have the same asymptotic $\Psi(F ; x, y) \sim \rho\left(\frac{\log x}{\log y}\right)$.
- Knowing the size of $\Psi(F ; x, y)$ has applications to analyzing the running time of modern factoring algorithms (quadratic sieve, number field sieve).
- A basic sort of question in number theory: are two arithmetic properties (in this case, friability and being the value of a polynomial) independent?

Introduction
(2) Bounds for friable values of polynomials

- How friable can values of special polynomials be?
- How friable can values of general polynomials be?
- Can we have lots of friable values?
(3) Conjecture for prime values of polynomials

4. Conjecture for friable values of polynomials

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have tots of triabte values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

How friable can values of special polynomials be?

- For binomials, there's a nice trick which yields:

Theorem (Schinzel, 1967)

For any nonzero integers A and B, any positive integer d, and any $\varepsilon>0$, there are infinitely many numbers n for which $A n^{d}+B$ is n^{ε}-friable.

- Balog and Wooley (1998), building on an idea of Eggleton and Selfridge, extended this result to products of binomials

Friable values of polynomials

Greg Martin

introduction

Friable integers

Friable values of polynomials

Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)

A uniform version of Hypothesis H

Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

How friable can values of special polynomials be?

- For binomials, there's a nice trick which yields:

Theorem (Schinzel, 1967)

For any nonzero integers A and B, any positive integer d, and any $\varepsilon>0$, there are infinitely many numbers n for which $A n^{d}+B$ is n^{ε}-friable.

- Balog and Wooley (1998), building on an idea of Eggleton and Selfridge, extended this result to products of binomials

$$
\prod_{j=1}^{L}\left(A_{j} n^{d_{j}}+B_{j}\right)
$$

Friable integers

Friable values of poly nomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)

A uniform version of Hypothesis H

Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Proof for an explicit binomial

Friable values of
polynomials
Greg Martin

Example

For any $\varepsilon>0$, there are infinitely many numbers n for which $F(n)=3 n^{5}+7$ is n^{ε}-friable.

Define $n_{k}=3^{8 k-1} 7^{2 k}$. Then

factors into values of cyclotomic polynomials:

- Φ_{m} has integer coefficients and degree $\phi(m)$

Proof for an explicit binomial

Example

For any $\varepsilon>0$, there are infinitely many numbers n for which $F(n)=3 n^{5}+7$ is n^{ε}-friable.

Define $n_{k}=3^{8 k-1} 7^{2 k}$. Then

$$
F\left(n_{k}\right)=3^{5(8 k-1)+1} 7^{5(2 k)}+7=-7\left(\left(-3^{4} 7\right)^{10 k-1}-1\right)
$$

factors into values of cyclotomic polynomials:

$$
F\left(n_{k}\right)=-7 \prod_{m \mid(10 k-1)} \Phi_{m}\left(-3^{4} 7\right)
$$

Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

- Φ_{m} has integer coefficients and degree $\phi(m)$

Proof for an explicit binomial

Friable values of polynomials

Example

For any $\varepsilon>0$, there are infinitely many numbers n for which $F(n)=3 n^{5}+7$ is n^{ε}-friable.

Define $n_{k}=3^{8 k-1} 7^{2 k}$. Then

$$
F\left(n_{k}\right)=3^{5(8 k-1)+1} 7^{5(2 k)}+7=-7\left(\left(-3^{4} 7\right)^{10 k-1}-1\right)
$$

factors into values of cyclotomic polynomials:

$$
F\left(n_{k}\right)=-7 \prod_{m \mid(10 k-1)} \Phi_{m}\left(-3^{4} 7\right)
$$

Proof for an explicit binomial

Friable values of polynomials

Example

For any $\varepsilon>0$, there are infinitely many numbers n for which $F(n)=3 n^{5}+7$ is n^{ε}-friable.

Define $n_{k}=3^{8 k-1} 7^{2 k}$. Then

$$
F\left(n_{k}\right)=3^{5(8 k-1)+1} 7^{5(2 k)}+7=-7\left(\left(-3^{4} 7\right)^{10 k-1}-1\right)
$$

factors into values of cyclotomic polynomials:

$$
F\left(n_{k}\right)=-7 \prod_{m \mid(10 k-1)} \Phi_{m}\left(-3^{4} 7\right) .
$$

Proof for an explicit binomial

Example

For any $\varepsilon>0$, there are infinitely many numbers n for which $F(n)=3 n^{5}+7$ is n^{ε}-friable.

Define $n_{k}=3^{8 k-1} 7^{2 k}$. Then

$$
F\left(n_{k}\right)=3^{5(8 k-1)+1} 7^{5(2 k)}+7=-7\left(\left(-3^{4} 7\right)^{10 k-1}-1\right)
$$

factors into values of cyclotomic polynomials:

$$
F\left(n_{k}\right)=-7 \prod_{m \mid(10 k-1)} \Phi_{m}\left(-3^{4} 7\right)
$$

- $\Phi_{m}(x)=\prod_{\substack{1 \leq r \leq m \\(r, m)=1}}\left(x-e^{2 \pi i r / m}\right)$
- Φ_{m} has integer coefficients and degree $\phi(m)$

From the last slide

- $F(n)=3 n^{5}+7$
- $F\left(n_{k}\right)=-7 \quad \prod$
$\Phi_{m}\left(-3^{4} 7\right)$
- $n_{k}=3^{8 k-1} 7^{2 k}$ $m \mid(10 k-1)$
- primes dividing $F\left(n_{k}\right)$ are $\leq \max _{m \mid(10 k-1)}\left|\Phi_{m}\left(-3^{4} 7\right)\right|$
- $\Phi_{m}(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10 k-1)}$
- n_{k} is roughly $\left(3^{4} 7\right)^{4 k}$, but the largest prime factor of $F\left(n_{k}\right)$ is bounded by roughly $\left(3^{4} 7\right)^{\phi(10 k-1)}$
- infinitely many k with $\phi(10 k-1) / 4 k$

How many such friable values? $>_{F, \varepsilon} \log x$, for $n \leq x$ can be made quantitative $n^{C_{F} / \log \log \log n \text {-friable values }}$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

mials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

From the last slide

- $F(n)=3 n^{5}+7$
- $F\left(n_{k}\right)=-7 \quad \prod$
$\Phi_{m}\left(-3^{4} 7\right)$
- $n_{k}=3^{8 k-1} 7^{2 k}$ $m \mid(10 k-1)$
- primes dividing $F\left(n_{k}\right)$ are $\leq \max _{m \mid(10 k-1)}\left|\Phi_{m}\left(-3^{4} 7\right)\right|$
- $\Phi_{m}(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10 k-1)}$
- n_{k} is roughly $\left(3^{4} 7\right)^{4 k}$, but the largest prime factor of $F\left(n_{k}\right)$ is bounded by roughly $\left(3^{4} 7\right)^{\phi(10 k-1)}$

Friable values of polynomials

ntroduction

Friable integers

Friable values of polynomials

Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

From the last slide

- $F(n)=3 n^{5}+7$
- $F\left(n_{k}\right)=-7 \quad \prod$
$\Phi_{m}\left(-3^{4} 7\right)$
- $n_{k}=3^{8 k-1} 7^{2 k}$ $m \mid(10 k-1)$
- primes dividing $F\left(n_{k}\right)$ are $\leq \max _{m \mid(10 k-1)}\left|\Phi_{m}\left(-3^{4} 7\right)\right|$
- $\Phi_{m}(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10 k-1)}$
- n_{k} is roughly $\left(3^{4} 7\right)^{4 k}$, but the largest prime factor of $F\left(n_{k}\right)$ is bounded by roughly $\left(3^{4} 7\right)^{\phi(10 k-1)}$
- infinitely many k with $\phi(10 k-1) / 4 k<\varepsilon$
can be made quantitative $n^{c_{F} / \log \log \log n_{-} \text {-friable values }}$

Friable values of polynomials

From the last slide

- $F(n)=3 n^{5}+7$
- $F\left(n_{k}\right)=-7 \quad \prod$
$\Phi_{m}\left(-3^{4} 7\right)$
- $n_{k}=3^{8 k-1} 7^{2 k}$ $m \mid(10 k-1)$
- primes dividing $F\left(n_{k}\right)$ are $\leq \max _{m \mid(10 k-1)}\left|\Phi_{m}\left(-3^{4} 7\right)\right|$
- $\Phi_{m}(x)$ is roughly $x^{\phi(m)} \leq x^{\phi(10 k-1)}$
- n_{k} is roughly $\left(3^{4} 7\right)^{4 k}$, but the largest prime factor of $F\left(n_{k}\right)$ is bounded by roughly $\left(3^{4} 7\right)^{\phi(10 k-1)}$
- infinitely many k with $\phi(10 k-1) / 4 k<\varepsilon$

How many such friable values? $>_{F, \varepsilon} \log x$, for $n \leq x$
ε can be made quantitative $n^{c_{F} / \log \log \log n}$-friable values

Friable values of polynomials
ntroduction

Friable integers

Friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for triable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Polynomial factorizations

Friable values of

Example

The polynomial $F(x+F(x))$ is always divisible by $F(x)$. In particular, if $\operatorname{deg} F=d$, then $F(x+F(x))$ is roughly $x^{d^{2}}$ yet is automatically roughly $x^{d^{2}-d}$-friable.

Mnemonic

$$
x+F(x) \equiv x(\bmod F(x))
$$

Special case:

- If $F(x)$ is quadratic with lead coefficient a, then
- In particular, if $F(x)=x^{2}+b x+c$, then

Polynomial factorizations

Example

The polynomial $F(x+F(x))$ is always divisible by $F(x)$. In particular, if deg $F=d$, then $F(x+F(x))$ is roughly $x^{d^{2}}$ yet is automatically roughly $x^{d^{2}-d}$-friable.

Mnemonic

$$
x+F(x) \equiv x(\bmod F(x))
$$

Special case:

- If $F(x)$ is quadratic with lead coefficient a, then

$$
F(x+F(x))=F(x) \cdot a F\left(x+\frac{1}{a}\right)
$$

- In particular, if $F(x)=x^{2}+b x+c$, then

$$
F(x+F(x))=F(x) F(x+1) .
$$

A refinement of Schinzel

- Idea: use the reciprocal polynomial $x^{d} F(1 / x)$.
- Restrict to $F(x)=x^{d}+a_{2} x^{d-2}+\ldots$ for simplicity.
PropositionIet $h(x)$ be a nolynomial such that $x h(x)-1$ is divisible by$x^{d} F(1 / x)$. Then $F(h(x))$ is divisible by $x^{d} F(1 / x)$. Inparticular, we can take deg $h=d-1$, in which case $F(h(x))$is roughly $x^{d^{2}-d}$ yet is automatically roughly $x^{d^{2}-2 d}$-friable.
Mnemonic
Note: The proposition isn't true for $d=2$, since the leftover "factor" of degree $2^{2}-2 \cdot 2=0$ is a constant.

Friable values of
polynomials
Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture) A uniform version of Hypothesis H

Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient

polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

A refinement of Schinzel

- Idea: use the reciprocal polynomial $x^{d} F(1 / x)$.
- Restrict to $F(x)=x^{d}+a_{2} x^{d-2}+\ldots$ for simplicity.

Proposition

Let $h(x)$ be a polynomial such that $x h(x)-1$ is divisible by $x^{d} F(1 / x)$. Then $F(h(x))$ is divisible by $x^{d} F(1 / x)$. In particular, we can take deg $h=d-1$, in which case $F(h(x))$ is roughly $x^{d^{2}-d}$ yet is automatically roughly $x^{d^{2}-2 d}$-friable.

Mnemonic

$$
h(x) \equiv 1 / x(\bmod F(1 / x))
$$

Note: The proposition isn't true for $d=2$, since the leftover "factor" of degree $2^{2}-2 \cdot 2=0$ is a constant.

Recursively use Schinzel's construction

Friable values of polynomials

D_{m} : an unspecified polynomial of degree m

Example

$\operatorname{deg} F(x)=4$. Use Schinzel's construction repeatedly:

- For deg $F=2$, begin with $F\left(D_{4}\right)=D_{2} D_{2} D_{4}$. Specifically,

$$
\text { - For } \operatorname{deg} F=3 \text {, begin with } F\left(D_{4}\right)=D_{3} D_{3} D_{6} .
$$

introduction

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials

How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Recursively use Schinzel's construction

Friable values of polynomials

Greg Martin

introduction

Friable integers
Friable values of polynomials
Bounds for friable

values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

Recursively use Schinzel's construction

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Recursively use Schinzel's construction

D_{m} : an unspecified polynomial of degree m

Example

$\operatorname{deg} F(x)=4$. Use Schinzel's construction repeatedly:

$$
\begin{array}{ll}
D_{12}=F\left(D_{3}\right)=D_{4} D_{8} & \text { "score" }=8 / 3 \\
D_{84}=F\left(D_{21}\right)=D_{28} D_{8} D_{48} & \text { "score" }=16 / 7 \\
D_{3984}=F\left(D_{987}\right)=D_{1316} D_{376} D_{48} D_{2208} & \text { "score" }=736 / 329
\end{array}
$$

Recursively use Schinzel's construction

D_{m} : an unspecified polynomial of degree m

Example

$\operatorname{deg} F(x)=4$. Use Schinzel's construction repeatedly:

$$
\begin{array}{ll}
D_{12}=F\left(D_{3}\right)=D_{4} D_{8} & \text { "score" }=8 / 3 \\
D_{84}=F\left(D_{21}\right)=D_{28} D_{8} D_{48} & \text { "score" }=16 / 7 \\
D_{3984}=F\left(D_{987}\right)=D_{1316} D_{376} D_{48} D_{2208} & \text { "score" }=736 / 329
\end{array}
$$

- For deg $F=2$, begin with $F\left(D_{4}\right)=D_{2} D_{2} D_{4}$. Specifically,

$$
F(x+F(x)+F(x+F(x)))=F(x) \cdot a F\left(x+\frac{1}{a}\right) \cdot D_{4} .
$$

- For deg $F=3$, begin with $F\left(D_{4}\right)=D_{3} D_{3} D_{6}$.

How friable can values of general polynomials be?

- $d \geq$ 4: define $s(d)=d \prod_{j=1}^{\infty}\left(1-\frac{1}{u_{j}(d)}\right)$, where
$u_{1}(d)=d-1$ and $u_{j+1}(d)=u_{j}(d)^{2}-2$
- $s(2)=s(4) / 4$ and $s(3)=s(6) / 4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

$F(n)$	can be n ?-friable	$F(n)$	can be n ?-friable
degree 1	ε	degree 5	3.46410
degree 2	0.55902	degree 6	4.58258
degree 3	1.14564	degree 7	5.65685
degree 4	2.23607	degree d	$\approx d-1-2 / d$

How friable can values of general polynomials be?

- $d \geq$ 4: define $s(d)=d \prod_{j=1}^{\infty}\left(1-\frac{1}{u_{j}(d)}\right)$, where
$u_{1}(d)=d-1$ and $u_{j+1}(d)=u_{j}(d)^{2}-2$
- $s(2)=s(4) / 4$ and $s(3)=s(6) / 4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

$F(n)$	can be n ?-friable	$F(n)$	can be n ? -friable
degree 1	ε	degree 5	3.46410
degree 2	0.55902	degree 6	4.58258
degree 3	1.14564	degree 7	5.65685
degree 4	2.23607	degree d	$\approx d-1-2 / d$

How friable can values of general polynomials be?

- $d \geq$ 4: define $s(d)=d \prod_{j=1}^{\infty}\left(1-\frac{1}{u_{j}(d)}\right)$, where
$u_{1}(d)=d-1$ and $u_{j+1}(d)=u_{j}(d)^{2}-2$
- $s(2)=s(4) / 4$ and $s(3)=s(6) / 4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

Friable values of polynomials

Greg Martin

Friable integers
Friable values of poly nomials

Bounds for friable

How triable can values of special

How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

How friable can values of general polynomials be?

- $d \geq$ 4: define $s(d)=d \prod_{j=1}^{\infty}\left(1-\frac{1}{u_{j}(d)}\right)$, where

$$
u_{1}(d)=d-1 \text { and } u_{j+1}(d)=u_{j}(d)^{2}-2
$$

- $s(2)=s(4) / 4$ and $s(3)=s(6) / 4$

Theorem

(Schinzel, 1967) Given a polynomial $F(x)$ of degree $d \geq 2$, there are infinitely many numbers n for which $F(n)$ is $n^{s(d)}$-friable.

$F(n)$	can be $n^{?}$-friable	$F(n)$	can be $n^{?}$-friable
degree 1	ε	degree 5	3.46410
degree 2	0.55902	degree 6	4.58258
degree 3	1.14564	degree 7	5.65685
degree 4	2.23607	degree d	$\approx d-1-2 / d$

Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$
D_{168}=F\left(D_{84}\right)=D_{42} D_{42} D_{28} D_{8} D_{48} \quad \text { "score" }=4 / 7>0.56
$$

The counting function of such n is about $x^{1 / 3948}$.
"Improvement" Balog, M., Wooley can get $x^{2 / 3948}$ and an analogous improvement for $\operatorname{deg} F=3$.

introduction

Friable integers

Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special
polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$
\begin{aligned}
& D_{168}=F\left(D_{84}\right)=D_{42} D_{42} D_{28} D_{8} D_{48} \quad \text { "score" }=4 / 7>0.56 \\
& D_{7896}=F\left(D_{3948}\right) \quad \text { "score" }=92 / 329 \\
& =D_{1974} D_{1974} D_{1316} D_{376} D_{48} D_{2208}<0.56
\end{aligned}
$$

Balog, M., Wooley can get $x^{2 / 3948}$ and an analogous improvement for $\operatorname{deg} F=3$.

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$
\begin{aligned}
D_{168} & =F\left(D_{84}\right)=D_{42} D_{42} D_{28} D_{8} D_{48} & & \text { "score" }
\end{aligned}=4 / 7>0.56
$$

The counting function of such n is about $x^{1 / 3948}$.

$$
\begin{aligned}
\text { 'Improvement" } & \text { Balog, M., Wooley can get } x^{2 / 3948} \text { and an } \\
& \text { analogous improvement for } \operatorname{deg} F=3 .
\end{aligned}
$$

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special

How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Polynomial substitution yields small lower bounds

Special case

Given a quadratic polynomial $F(x)$, there are infinitely many numbers n for which $F(n)$ is $n^{0.55902}$-friable.

Example

To obtain n for which $F(n)$ is $n^{0.56}$-friable:

$$
\begin{aligned}
& D_{168}=F\left(D_{84}\right)=D_{42} D_{42} D_{28} D_{8} D_{48} \quad \text { "score" }=4 / 7>0.56 \\
& D_{7896}=F\left(D_{3948}\right) \quad \text { "score" }=92 / 329 \\
& =D_{1974} D_{1974} D_{1316} D_{376} D_{48} D_{2208}<0.56
\end{aligned}
$$

The counting function of such n is about $x^{1 / 3948}$.
"Improvement" Balog, M., Wooley can get $x^{2 / 3948}$ and an analogous improvement for $\operatorname{deg} F=3$.

Can we have lots of friable values?

Our expectation

For any $\varepsilon>0$, a positive proportion of values $F(n)$ are n^{ε}-friable.

We know this for:

- linear polynomials (arithmetic progressions)
- Hildebrand, then Balog and Ruzsa: $F(n)=n(a n+b)$, values n^{ε}-friable for any $\varepsilon>0$
- Hildebrand: $F(n)=(n+1) \cdots(n+L)$, values
n^{β}-friable for any $\beta>e^{-1 /(L-1)}$
Note: $\rho\left(e^{-1 / L}\right)=1-\frac{1}{L}$, so $\beta>e^{-1 / L}$ is trivial
- Dartvge: $F(n)=n^{2}+1$, values n^{β}-friable for any
$\beta>149 / 179$

Friable values of polynomials

Can we have lots of friable values?

Our expectation

For any $\varepsilon>0$, a positive proportion of values $F(n)$ are n^{ε}-friable.

We know this for:

- linear polynomials (arithmetic progressions)
- Hildebrand, then Balog and Ruzsa: $F(n)=n(a n+b)$, values n^{ε}-friable for any $\varepsilon>0$
- Hildebrand: $F(n)=(n+1) \cdots(n+L)$, values
n^{β}-friable for any $\beta>e^{-1 /(L-1)}$
Note: $\rho\left(e^{-1 / L}\right)=1-\frac{1}{L}$, so $\beta>e^{-1 / L}$ is trivial

Friable values of polynomials

Can we have lots of friable values?

Our expectation

For any $\varepsilon>0$, a positive proportion of values $F(n)$ are n^{ε}-friable.

We know this for:

- linear polynomials (arithmetic progressions)
- Hildebrand, then Balog and Ruzsa: $F(n)=n(a n+b)$, values n^{ε}-friable for any $\varepsilon>0$
- Hildebrand: $F(n)=(n+1) \cdots(n+L)$, values n^{β}-friable for any $\beta>e^{-1 /(L-1)}$
Note: $\rho\left(e^{-1 / L}\right)=1-\frac{1}{L}$, so $\beta>e^{-1 / L}$ is trivial
- Dartyge: $F(n)=n^{2}+1$, values n^{β}-friable for any $\beta>149 / 179$

Theorem (Dartyge, M., Tenenbaum, 2001)

Let $F(x)$ be any polynomial, let d be the highest degree of any irreducible factor of F, and let F have exactly K distinct irreducible factors of degree d. Then for any $\varepsilon>0$, a positive proportion of values $F(n)$ are $n^{d-1 / K+\varepsilon}$-friable.

Remark: for friability of level n^{d-1} or higher, only irreducible factors of degree $\geq d$ matter

Trivial: n^{d}-friable

Can remove the ε at the cost of the counting function: the number of $n \leq x$ for which $F(n)$ is $n^{d-1 / K}$-friable is

Friable values of polynomials

Greg Martin

Friable integers

Friable values of polynomials

How friable can values of special polynomials be?
How friable can values of genera - polymomals baz

Can we have lots of friable values?

Conjecture for prime

 values of nolynomialsSchinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Theorem (Dartyge, M., Tenenbaum, 2001)

Let $F(x)$ be any polynomial, let d be the highest degree of any irreducible factor of F, and let F have exactly K distinct irreducible factors of degree d. Then for any $\varepsilon>0, a$ positive proportion of values $F(n)$ are $n^{d-1 / K+\varepsilon}$-friable.

Remark: for friability of level n^{d-1} or higher, only irreducible factors of degree $\geq d$ matter

Trivial: n^{d}-friable
Can remove the ε at the cost of the counting function: the number of $n \leq x$ for which $F(n)$ is $n^{d-1 / K}$-friable is

$$
\gg \frac{x}{(\log x)^{K(\log 4-1+\varepsilon)}} .
$$

Friable values of
(1) Introduction
(2) Bounds for friable values of polynomials
(3) Conjecture for prime values of polynomials - Schinzel's "Hypothesis H" (Bateman-Horn conjecture)

- A uniform version of Hypothesis H

4. Conjecture for friable values of polynomials

introduction

Friable integers
Friable values of polynomials

Schinzel's "Hypothesis H" (Bateman-Horn conjecture)

Definition

$$
\begin{aligned}
\pi(F ; x)=\# & \{n \leq x
\end{aligned} \quad \begin{aligned}
& f(n) \text { is prime for each irreducible factor } f \text { of } F\}
\end{aligned}
$$

Conjecture: $\pi(F ; x)$ is asymptotic to $H(F) \operatorname{li}(F ; x)$, where:
L : the number of distinct irreducible factors of F

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

Schinzel's "Hypothesis H" (Bateman-Horn conjecture)

Definition

$$
\begin{aligned}
\pi(F ; x)=\# & \{n \leq x: \\
& f(n) \text { is prime for each irreducible factor } f \text { of } F\}
\end{aligned}
$$

Conjecture: $\pi(F ; x)$ is asymptotic to $H(F) \mathrm{li}(F ; x)$, where:

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Schinzel's "Hypothesis H" (Bateman-Horn conjecture)

Definition

$\pi(F ; x)=\#\{n \leq x$:
$f(n)$ is prime for each irreducible factor f of $F\}$

Conjecture: $\pi(F ; x)$ is asymptotic to $H(F) \mathrm{li}(F ; x)$, where:

- $\operatorname{li}(F ; x)=$

L : the number of distinct irreducible factors of F

Friable values of polynomials

Schinzel's "Hypothesis H" (Bateman-Horn conjecture)

Definition

$$
\begin{aligned}
\pi(F ; x)=\# & \{n \leq x
\end{aligned} \quad \begin{aligned}
& \text { : } \\
& \\
& f(n) \text { is prime for each irreducible factor } f \text { of } F\}
\end{aligned}
$$

Conjecture: $\pi(F ; x)$ is asymptotic to $H(F) \mathrm{li}(F ; x)$, where:

- $H(F)=\prod_{p}\left(1-\frac{1}{p}\right)^{-L}\left(1-\frac{\sigma(F ; p)}{p}\right)$.
L : the number of distinct irreducible factors of F $\sigma(F ; n)$: the number of solutions of $F(a) \equiv 0(\bmod n)$

A uniform version of Hypothesis H

Hypothesis UH

$$
\pi(F ; t)-H(F) \operatorname{li}(F ; t)<_{d, B} 1+\frac{H(F) t}{(\log t)^{L+1}}
$$

uniformly for all polynomials F of degree d with L distinct irreducible factors, each of which has coefficients bounded by t^{B} in absolute value.

- $\operatorname{li}(F ; t)$ is asymptotic to $\frac{t}{(\log t)^{L}}$ for fixed F
- For $d^{\prime}=K=1$, equivalent to expected number of primes, in an interval of length $y=x^{\varepsilon}$ near x, in an arithmetic progression to a modulus $q \leq y^{1-}$
- Don't really need this strong a uniformity, but rather on average over some funny family to be described later

introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of nolvnomia
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"

Conjecture for friable

A uniform version of Hypothesis H

Hypothesis UH

$$
\pi(F ; t)-H(F) \operatorname{li}(F ; t)<_{d, B} 1+\frac{H(F) t}{(\log t)^{L+1}}
$$

uniformly for all polynomials F of degree d with L distinct irreducible factors, each of which has coefficients bounded by t^{B} in absolute value.

- $\mathrm{ii}(F ; t)$ is asymptotic to $\frac{t}{(\log t)^{\text {L }}}$ for fixed F
- For $d=K=1$, equivalent to expected number of primes, in an interval of length $y=x^{\varepsilon}$ near x, in an arithmetic progression to a modulus $q \leq y^{1-\varepsilon}$
- Don't really need this strong a uniformity, but rather on average over some funny family to be described later
(2) Bounds for friable values of polynomials
(3) Conjecture for prime values of polynomials
(4) Conjecture for friable values of polynomials
- Statement of the conjecture
- Reduction to convenient polynomials
- Translation into prime values of polynomials
- Shepherding the local factors
- Sums of multiplicative functions

Introduction

Friable integers
Friable values of polynomials

What would we expect on probablistic grounds?

Let $F(x)=f_{1}(x) \cdots f_{L}(x)$, where $\operatorname{deg} f_{j}(x)=d_{j}$. Let $u>0$.

- $f_{j}(n)$ is roughly $n^{d_{j}}$, and integers of that size are $n^{1 / u}$-friable with probability $\rho\left(d_{j} u\right)$.
- Are the friabilities of the various factors $f_{j}(n)$ independent? This would lead to a prediction involving
- What about local densities depending on the arithmetic of F (as in Hypothesis H)?

Friable values of polynomials

introduction

Friable integers

Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

values of polynomials

Statement of the conjecture

What would we expect on probablistic grounds?

Let $F(x)=f_{1}(x) \cdots f_{L}(x)$, where $\operatorname{deg} f_{j}(x)=d_{j}$. Let $u>0$.

- $f_{j}(n)$ is roughly $n^{d_{j}}$, and integers of that size are $n^{1 / u}$-friable with probability $\rho\left(d_{j} u\right)$.
- Are the friabilities of the various factors $f_{j}(n)$ independent? This would lead to a prediction involving

$$
x \prod_{j=1}^{L} \rho\left(d_{j} u\right)
$$

- What about local densities depending on the arithmetic of F (as in Hypothesis H)?

What would we expect on probablistic grounds?

Let $F(x)=f_{1}(x) \cdots f_{L}(x)$, where $\operatorname{deg} f_{j}(x)=d_{j}$. Let $u>0$.

- $f_{j}(n)$ is roughly $n^{d_{j}}$, and integers of that size are $n^{1 / u}$-friable with probability $\rho\left(d_{j} u\right)$.
- Are the friabilities of the various factors $f_{j}(n)$ independent? This would lead to a prediction involving

$$
x \prod_{j=1}^{L} \rho\left(d_{j} u\right)
$$

- What about local densities depending on the arithmetic of F (as in Hypothesis H)?

Conjecture for friable values of polynomials

Conjecture

Let $F(x)$ be any polynomial, let f_{1}, \ldots, f_{L} be its distinct irreducible factors, and let d_{1}, \ldots, d_{L} be their degrees. Then

$$
\Psi\left(F ; x, x^{1 / u}\right)=x \prod_{j=1}^{L} \rho(d j u)+O\left(\frac{x}{\log x}\right)
$$

for all $0<u$.

If F irreducible: $\Psi\left(F ; x, x^{1 / u}\right)=x \rho(d u)+O(x / \log x)$ for $0<u$.

Remark: Rather more controversial than Hypothesis H.

Introduction

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Conjecture for friable values of polynomials

Theorem (M., 2002)

Assume Hypothesis UH. Let $F(x)$ be any polynomial, let f_{1}, \ldots, f_{L} be its distinct irreducible factors, and let d_{1}, \ldots, d_{L} be their degrees. Let $d=\max \left\{d_{1}, \ldots, d_{L}\right\}$, and let F have exactly K distinct irreducible factors of degree d. Then

$$
\Psi\left(F ; x, x^{1 / u}\right)=x \prod_{j=1}^{L} \rho\left(d_{j} u\right)+O\left(\frac{x}{\log x}\right)
$$

for all $0<u<1 /(d-1 / K)$.
If F irreducible: $\Psi\left(F ; x, x^{1 / u}\right)=x \rho(d u)+O(x / \log x)$ for

$$
0<u<1 /(d-1) .
$$

Trivial: $0<u<1 / d$.
Reason to talk about more general K : There is one part of the argument that causes an additional difficulty when K

Conjecture for friable values of polynomials

Theorem (M., 2002)

Assume Hypothesis UH. Let $F(x)$ be any polynomial, let f_{1}, \ldots, f_{L} be its distinct irreducible factors, and let d_{1}, \ldots, d_{L} be their degrees. Let $d=\max \left\{d_{1}, \ldots, d_{L}\right\}$, and let F have exactly K distinct irreducible factors of degree d. Then

$$
\Psi\left(F ; x, x^{1 / u}\right)=x \prod_{j=1}^{L} \rho\left(d_{j} u\right)+O\left(\frac{x}{\log x}\right)
$$

for all $0<u<1 /(d-1 / K)$.
If F irreducible: $\Psi\left(F ; x, x^{1 / u}\right)=x \rho(d u)+O(x / \log x)$ for

$$
0<u<1 /(d-1)
$$

$$
\text { Trivial: } 0<u<1 / d
$$

Reason to talk about more general K : There is one part of the argument that causes an additional difficulty when $K>1$.

Reduction to convenient polynomials

Without loss of generality, we may assume:

(1) $F(x)$ is the product of distinct irreducible polynomials $f_{1}(x), \ldots, f_{K}(x)$, all of the same degree d.
(2) $F(x)$ takes at least one nonzero value modulo every prime.
(3) No two distinct irreducible factors $f_{f}(x), f_{j}(x)$ of $F(x)$ have a common zero modulo any prime.

- (1) is acceptable since the friability level exceeds x^{d-1}.
- (2) is not a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.
- Both (2) and (3) are achieved by looking at values of $F(x)$ on suitable arithmetic progressions $F(Q x+R)$ separately.

Friable values of polynomials

Greg Martin

introduction

Friable integers

Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials

Translation into prime values of polynomials
Shepherding the local factors Sums of multiplicative functions

Reduction to convenient polynomials

Without loss of generality, we may assume:

(1) $F(x)$ is the product of distinct irreducible polynomials $f_{1}(x), \ldots, f_{K}(x)$, all of the same degree d.
(2) $F(x)$ takes at least one nonzero value modulo every prime.
(3) No two distinct irreducible factors $f_{i}(x), f_{j}(x)$ of $F(x)$ have a common zero modulo any prime.

- (1) is acceptable since the friability level exceeds x^{d-1}.
- (2) is not a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.
- Both (2) and (3) are achieved by looking at values of $F(x)$ on suitable arithmetic progressions $F(Q x+R)$ separately.

Friable integers

Friable values of polynomials

Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials

Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Reduction to convenient polynomials

Without loss of generality, we may assume:

(1) $F(x)$ is the product of distinct irreducible polynomials $f_{1}(x), \ldots, f_{K}(x)$, all of the same degree d.
(2) $F(x)$ takes at least one nonzero value modulo every prime.
(3) No two distinct irreducible factors $f_{i}(x), f_{j}(x)$ of $F(x)$ have a common zero modulo any prime.

- (1) is acceptable since the friability level exceeds x^{d-1}.
- (2) is not a necessary condition to have friable values (as it is to have prime values). Nevertheless, we can still reduce to this case.
- Both (2) and (3) are achieved by looking at values of $F(x)$ on suitable arithmetic progressions $F(Q x+R)$ separately.

Friable integers
Friable values of polynomials Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Reduction to convenient polynomials

Without loss of generality, we may assume:

(1) $F(x)$ is the product of distinct irreducible polynomials $f_{1}(x), \ldots, f_{K}(x)$, all of the same degree d.
(2) $F(x)$ takes at least one nonzero value modulo every prime.
(3) No two distinct irreducible factors $f_{i}(x), f_{j}(x)$ of $F(x)$ have a common zero modulo any prime.

Under (1), we want to prove that

$$
\Psi\left(F ; x, x^{1 / u}\right)=x \rho(d u)^{K}+O\left(\frac{x}{\log x}\right)
$$

for all $0<u<1 /(d-1 / K)$.

Introduction

Friable integers
Eriable values of poly nomials

Bounds for friable

How triable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Inclusion-exclusion on irreducible factors

Friable values of

Proposition

Let F be a primitive polynomial, and let F_{1}, \ldots, F_{K} denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F ; x, y)=\lfloor x\rfloor+\sum_{1 \leq k \leq K}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq K} M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, y\right) .
$$

Definition

$M(f: x, v)=\#\{1 \leq n \leq x:$ for each irreducible factor g of f there exists a prime $p>y$ such that $p \mid g(n)\}$

Inclusion-exclusion on irreducible factors

Proposition

Let F be a primitive polynomial, and let F_{1}, \ldots, F_{K} denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F ; x, y)=\lfloor x\rfloor+\sum_{1 \leq k \leq K}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq K} M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, y\right) .
$$

Definition

$M(f ; x, y)=\#\{1 \leq n \leq x$: for each irreducible factor g of f, there exists a prime $p>y$ such that $p \mid g(n)\}$.

Greg Martin

introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Inclusion-exclusion on irreducible factors

Friable values of polynomials

Greg Martin

Proposition

Let F be a primitive polynomial, and let F_{1}, \ldots, F_{K} denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F ; x, y)=\lfloor x\rfloor+\sum_{1 \leq k \leq K}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq K} M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, y\right) .
$$

If we knew that $M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, x^{1 / u}\right) \sim x(\log d u)^{k}$, then

Inclusion-exclusion on irreducible factors

Proposition

Let F be a primitive polynomial, and let F_{1}, \ldots, F_{K} denote the distinct irreducible factors of F. Then for $x \geq y \geq 1$,

$$
\Psi(F ; x, y)=\lfloor x\rfloor+\sum_{1 \leq k \leq K}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq K} M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, y\right) .
$$

If we knew that $M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, x^{1 / u}\right) \sim x(\log d u)^{k}$, then

$$
\begin{aligned}
\Psi\left(F ; x, x^{1 / u}\right) & \sim x+\sum_{1 \leq k \leq K}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq K} x(\log d u)^{k} \\
& =x\left(1+\sum_{1 \leq k \leq K}\binom{K}{k}(-\log d u)^{k}\right) \\
& =x(1-\log d u)^{K}=x \rho(d u)^{K} .
\end{aligned}
$$

Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable

How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Inclusion-exclusion on irreducible factors

Definition

$M(f ; x, y)=\#\{1 \leq n \leq x$: for each irreducible factor g of f, there exists a prime $p>y$ such that $p \mid g(n)\}$.

We want to prove $M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, x^{1 / u}\right) \sim x(\log d u)^{k}$. To do this, we sort by the values $n_{j}=F_{i_{j}}(n) / p_{j}$, among those n counted by $M\left(F_{i_{1}} \ldots F_{i_{k}} ; x, x^{1 / u}\right)$.

Proposition

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Proposition

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Proposition

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Proposition

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y) & =\sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} \\
& \left(\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{\left.\left.n_{1} \cdots n_{k}, b ; \eta_{n_{1}, \ldots, n_{k}}\right)\right) .} .\right.\right.
\end{aligned}
$$

not important

$$
\eta_{n_{1}, \ldots, n_{k}} \approx\left(y \max \left\{n_{1}, \ldots, n_{k}\right\}\right)^{1 / d}\left(n_{1} \cdots n_{k}\right)^{-1}
$$

It's here only because the large primes dividing $f_{j}(n)$ had to exceed y. (Later we'll take $y=x^{1 / u}$.)

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomial

How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime
values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient

polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Proposition

Friable values of polynomials

Greg Martin

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y) & =\sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} \\
& \left(\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} ; \eta_{n_{1}, \ldots, n_{k}}\right)\right) .
\end{aligned}
$$

fairly important

$$
\begin{aligned}
& \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)=\left\{b\left(\bmod n_{1} \cdots n_{k}\right):\right. \\
& \left.\quad n_{1}\left|f_{1}(b), n_{2}\right| f_{2}(b), \ldots, n_{k} \mid f_{k}(b)\right\}
\end{aligned}
$$

Proposition

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Proposition

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y) & =\sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} \\
& \left(\pi\left(f_{n_{1} \ldots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} ; \eta_{n_{1}, \ldots, n_{k}}\right)\right) .
\end{aligned}
$$

rather important

$$
f_{n_{1} \cdots n_{k}, b}(t)=\frac{f\left(n_{1} \cdots n_{k} t+b\right)}{n_{1} \cdots n_{k}} \in \mathbb{Z}[x]
$$

In fact, a good understanding of the family $f_{n_{1} \cdots n_{k}, b}$ is necessary even to treat error terms. However, we'll only include the details when treating the main term.

Proposition

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Understanding $M(f ; x, y)$ inside out

- Look at $\pi\left(f_{n_{1} \cdots n_{k}, b} ; \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} \eta_{n_{1}, \ldots, n_{k}}\right)$
- Upper bound sieve (Brun, Selberg):

- Main term for $\pi(f ; x)$ (we use Hypothesis UH here!):

Friable values of
polynomials
Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient

 polynomialsTranslation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Understanding $M(f ; x, y)$ inside out

- Look at $\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} ; \eta_{n_{1}, \ldots, n_{k}}\right)$
- Upper bound sieve (Brun, Selberg):

$$
\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x / n_{1} \cdots n_{k}}{(\log x)^{k+1}}\right)
$$

Friable values of polynomials

Greg Martin

ntroduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Understanding $M(f ; x, y)$ inside out

- Look at $\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} ; \eta_{n_{1}, \ldots, n_{k}}\right)$
- Upper bound sieve (Brun, Selberg):

$$
\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x / n_{1} \cdots n_{k}}{(\log x)^{k+1}}\right)
$$

- Main term for $\pi(f ; x)$ (we use Hypothesis UH here!):

$$
H\left(f_{n_{1} \cdots n_{k}, b}\right) \text { li }\left(f_{n_{1} \cdots n_{k}, b} ; \frac{x-b}{n_{1} \cdots n_{k}}\right)+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x}{n_{1} \cdots n_{k}(\log x)^{k+1}}\right)
$$

Friable values of polynomials

Greg Martin

ntroduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials

Statement of the conjecture

Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Understanding $M(f ; x, y)$ inside out

- Look at $\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{n_{1} \cdots n_{k}, b ;} ; \eta_{n_{1}, \ldots, n_{k}}\right)$
- Upper bound sieve (Brun, Selberg):

$$
\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x / n_{1} \cdots n_{k}}{(\log x)^{k+1}}\right)
$$

- Main term for $\pi(f ; x)$ (we use Hypothesis UH here!):

$$
H\left(f_{n_{1} \cdots n_{k}, b}\right) \text { li }\left(f_{n_{1} \cdots n_{k}, b} ; \frac{x-b}{n_{1} \cdots n_{k}}\right)+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x}{n_{1} \cdots n_{k}(\log x)^{k+1}}\right)
$$

- li is a pretty smooth function:

Friable values of polynomials

Greg Martin

$$
\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x}{n_{1} \cdots n_{k}(\log x)^{k+1}}\right)
$$

Understanding $M(f ; x, y)$ inside out

Friable values of polynomials

Greg Martin

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} \\
& \left(\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{\left.n_{1} \cdots n_{k}, b ; \eta_{n_{1}}, \ldots, n_{k}\right)}\right)\right. \\
= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}}\left(\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right)\right. \\
& \times \frac{x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}\left(1+O\left(\frac{1}{\log x}\right)\right) .
\end{aligned}
$$

- Now we have:

$$
\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}+O\left(\frac{H\left(f_{n_{1} \cdots n_{k}, b}\right) x}{n_{1} \cdots n_{k}(\log x)^{k+1}}\right)
$$

Understanding $M(f ; x, y)$ inside out

Friable values of polynomials

Greg Martin

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} \\
& \left(\pi\left(f_{n_{1} \cdots n_{k}, b ;} \frac{x-b}{n_{1} \cdots n_{k}}\right)-\pi\left(f_{\left.n_{1} \cdots n_{k}, b ; \eta_{n_{1}}, \ldots, n_{k}\right)}\right)\right. \\
= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}}\left(\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right)\right. \\
& \times \frac{x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}\left(1+O\left(\frac{1}{\log x}\right)\right) .
\end{aligned}
$$

Next: concentrate on

$$
\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right.
$$

Nice sums over local solutions

Friable values of
polynomials
Greg Martin

Recall

$$
H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

Recall

$$
\sigma(f ; p)=\{a(\bmod p): f(a) \equiv 0(\bmod p)\}
$$

Proposition

$$
\cdots\left(n_{1} \cdots n_{k}, b\right)=H(f) g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right), \text { where }
$$

Introduction

Friable integers
Friable values of polynomials
Bounds for friable values of polynomials How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of
polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Nice sums over local solutions

Friable values of polynomials

Recall

$$
H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

Recall

$$
\sigma(f ; p)=\{a(\bmod p): f(a) \equiv 0(\bmod p)\}
$$

Proposition

$g_{k}\left(n_{k}\right)$, where

Introduction

Friable integers
Friable values of polynomials
Bounds for friable values of polynomials

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Nice sums over local solutions

Friable values of polynomials

Recall

$$
H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

Recall

$$
\begin{aligned}
& \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)=\left\{b\left(\bmod n_{1} \cdots n_{k}\right):\right. \\
& \left.\quad n_{1}\left|f_{1}(b), n_{2}\right| f_{2}(b), \ldots, n_{k} \mid f_{k}(b)\right\}
\end{aligned}
$$

Proposition

$g_{k}\left(n_{k}\right)$, where

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient

polynomials

Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Nice sums over local solutions

Recall

$$
H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

Recall

$$
\begin{aligned}
& \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)=\left\{b\left(\bmod n_{1} \cdots n_{k}\right):\right. \\
& \left.\quad n_{1}\left|f_{1}(b), n_{2}\right| f_{2}(b), \ldots, n_{k} \mid f_{k}(b)\right\}
\end{aligned}
$$

Proposition

$$
\sum \quad H\left(f_{\left.n_{1}, \cdots n_{k}, b\right)}\right)=H(f) g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) \text {, where }
$$ $b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)$

$$
g_{j}\left(n_{j}\right)=\prod_{p^{\nu} \| n_{j}}\left(1-\frac{\sigma\left(f_{;} p\right)}{p}\right)^{-1}\left(\sigma\left(f_{j} ; p^{\nu}\right)-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p}\right) .
$$

Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H" (Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

Nice sums over local solutions

Recall

$$
H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

Proving this proposition ...

\ldots is fun, actually, involving the Chinese remainder theorem, counting lifts of local solutions (Hensel's lemma), and so on.

Proposition

$$
\sum \quad H\left(f_{n_{1} \cdots n_{k}, b}\right)=H(f) g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right), \text { where }
$$

$b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)$

$$
g_{j}\left(n_{j}\right)=\prod_{p^{\nu} \| n_{j}}\left(1-\frac{\sigma\left(f_{i} p\right)}{p}\right)^{-1}\left(\sigma\left(f_{j} ; p^{\nu}\right)-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p}\right) .
$$

Greg Martin

Introduction
Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}}\left(\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right)\right. \\
& \times \frac{x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}\left(1+O\left(\frac{1}{\log x}\right)\right) \\
= & x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} .
\end{aligned}
$$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary
(take care of logarithms later, via partial summation)

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}}\left(\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right)\right. \\
& \times \frac{x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}\left(1+O\left(\frac{1}{\log x}\right)\right) \\
= & x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} .
\end{aligned}
$$

Therefore: consider $\sum_{n_{1} \leq \xi_{1} / y} \cdots \sum_{n_{k} \leq \xi_{k} / y} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}}$

$$
\left(n_{i}, n_{j}\right)=1(1 \leq i<j \leq k)
$$

Friable values of polynomials

Greg Martin
introduction
Friable integers
Firabie values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
(take care of logarithms later, via partial summation)

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}}\left(\sum_{b \in \mathcal{R}\left(f ; n_{1}, \ldots, n_{k}\right)} H\left(f_{\left.n_{1} \cdots n_{k}, b\right)}\right)\right. \\
& \times \frac{x / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)}\left(1+O\left(\frac{1}{\log x}\right)\right) \\
= & x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1 \\
\cdots}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} .
\end{aligned}
$$

Therefore: consider $\sum_{n_{1} \leq \xi_{1} / y} \cdots \sum_{n_{k} \leq \xi_{k} / y} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}}$

$$
\left(n_{i}, n_{j}\right)=1(1 \leq i<j \leq k)
$$

Friable values of polynomials

Greg Martin

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

First: consider more general sums of multiplicative functions

Multiplicative functions: one-variable sums

Definition

Let's say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w
$$

Note: we really need upper bounds on $g\left(p^{\nu}\right)$ as well

Lemma

If the multip/icative function $g(n)$ is a on average, then

Friable values of polynomials

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of specia polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable

Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

Multiplicative functions: one-variable sums

Definition

Let's say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w
$$

Note: we really need upper bounds on $g\left(p^{\nu}\right)$ as well ...

Lemma

If the multiplicative function $g(n)$ is a on average, then

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Multiplicative functions: one-variable sums

Definition

Let's say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w
$$

Note: we really need upper bounds on $g\left(p^{\nu}\right)$ as well

Lemma

If the multiplicative function $g(n)$ is α on average, then

$$
\begin{gathered}
\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^{\alpha}, \\
\text { where } c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right) .
\end{gathered}
$$

Multiplicative functions: one-variable sums

Definition

Let's say a multiplicative function $g(n)$ is α on average if it takes nonnegative values and

$$
\sum_{p \leq w} \frac{g(p) \log p}{p} \sim \alpha \log w
$$

Note: we really need upper bounds on $g\left(p^{\nu}\right)$ as well

Lemma

If the multiplicative function $g(n)$ is α on average, then

$$
\begin{gathered}
\sum_{n \leq t} \frac{g(n)}{n} \sim c(g)(\log t)^{\alpha}, \\
\text { where } c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right) .
\end{gathered}
$$

Multiplicative functions: more variables

From previous slide

$$
c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

By the lemma on the previous slide, we easily get:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\sum_{n_{1} \leq t} \cdots \sum_{n_{k} \leq t} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}} \sim c\left(g_{1}\right) \cdots c\left(g_{k}\right)(\log t)^{k} .
$$

However, we need the analogous sum with the coprimality condition $\left(n_{i}, n_{j}\right)=1$. (This is where $K>1$ makes life harder!)

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable
values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

Multiplicative functions: more variables

From previous slide

$$
c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

By the lemma on the previous slide, we easily get:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\sum_{n_{1} \leq t} \cdots \sum_{n_{k} \leq t} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}} \sim c\left(g_{1}\right) \cdots c\left(g_{k}\right)(\log t)^{k} .
$$

However, we need the analogous sum with the coprimality condition $\left(n_{i}, n_{j}\right)=1$. (This is where $K>1$ makes life harder!)

Multiplicative functions: more variables

From previous slide

$$
c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

We get:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\sum_{\substack{n_{1} \leq t \\\left(n_{i}, n_{j}\right)=1 \\(1 \leq i<j \leq k)}} \cdots \sum_{\substack{n_{k} \leq t \\(1 \leq i<k}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}} \sim c\left(g_{1}+\cdots+g_{k}\right)(\log t)^{k} .
$$

However, we need the analogous sum with the coprimality condition $\left(n_{i}, n_{j}\right)=1$. (This is where $K>1$ makes life harder!)

Multiplicative functions: more variables

From previous slide

$$
c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

We get:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\sum_{\substack{n_{1} \leq t \\\left(n_{i}, n_{j}\right)=1 \\(1 \leq i<j \leq k)}} \cdots \sum_{\substack{n_{k} \leq t \\(1 \leq i}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}} \sim c\left(g_{1}+\cdots+g_{k}\right)(\log t)^{k}
$$

However, we need the analogous sum with the coprimality condition $\left(n_{i}, n_{j}\right)=1$. (This is where $K>1$ makes life harder!)

Never mind that $g_{1}+\cdots+g_{k}$ isn't multiplicative!

Partial summation: return of the logs

The proposition on the previous slide:

gives, after a k-fold partial summation argument:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\begin{aligned}
& \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k}} \\
& \sim c\left(g_{1}+\cdots+g_{k}\right) \prod_{j=1}^{k} \log \frac{\xi_{j}}{y} .
\end{aligned}
$$

the prime ideal theorem.

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials
Bounds for friable values of polynomials
How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

Partial summation: return of the logs

The proposition on the previous slide ...
... gives, after a k-fold partial summation argument:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\begin{aligned}
& \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1 \\
(1 \leq i<j \leq k)}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k} \log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} \\
& \sim c\left(g_{1}+\cdots+g_{k}\right) \prod_{j=1}^{k} \log \frac{\log \xi_{j}}{\log y} .
\end{aligned}
$$

the prime ideal theorem.

Friable values of polynomials

Greg Martin

introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

Partial summation: return of the logs

The proposition on the previous slide ...
... gives, after a k-fold partial summation argument:

Proposition

If the multiplicative functions $g_{1}(n), \ldots, g_{k}(n)$ are each 1 on average, then

$$
\begin{aligned}
& \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right)}{n_{1} \cdots n_{k} \log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} \\
& \sim c\left(g_{1}+\cdots+g_{k}\right) \prod_{j=1}^{k} \log \frac{\log \xi_{j}}{\log y} .
\end{aligned}
$$

For our functions, $g_{j}(p)=\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\sigma\left(f_{j} ; p\right)-\frac{\sigma\left(f_{j} ; p^{2}\right)}{p}\right)$ $=\sigma\left(f_{j} ; p\right)\left(1+O\left(\frac{1}{p}\right)\right)$, and $\sigma\left(f_{j} ; p\right)$ is indeed 1 on average by the prime ideal theorem.

Friable values of polynomials

Bounds for friable

How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime

values of polynomials

Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
& M(f ; x, y)= x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} \\
&=H(f) c\left(g_{1}+\cdots+g_{k}\right) \\
& \times x\left(\prod_{j=1}^{k} \log \frac{\log \xi_{j}}{\log y}\right)\left(1+O\left(\frac{1}{\log x}\right)\right) .
\end{aligned}
$$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
& M(f ; x, y)= x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} \\
&=H(f) c\left(g_{1}+\cdots+g_{k}\right) \\
& \times x\left((\log d u)^{k}\right)\left(1+O\left(\frac{1}{\log x}\right)\right) .
\end{aligned}
$$

Recall: $\xi_{j}=f_{j}(x) \approx x^{d}$, and we care about $y=x^{1 / u}$. Then $\log \left(\log \xi_{j} / \log y\right) \sim \log d u$.

We have the order of magnitude $x(\log d u)^{k}$ we wanted
but what about the local factors $H(f) c\left(g_{1}+\cdots+g_{k}\right)$?

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

For $f=f_{1} \ldots f_{k}$ and x and y sufficiently large,

$$
\begin{aligned}
M(f ; x, y)= & x H(f)\left(1+O\left(\frac{1}{\log x}\right)\right) \\
& \times \sum_{\substack{n_{1} \leq \xi_{1} / y \\
\left(n_{i}, n_{j}\right)=1 \\
\cdots}} \cdots \sum_{\substack{n_{k} \leq \xi_{k} / y \\
(1 \leq i<j \leq k)}} \frac{g_{1}\left(n_{1}\right) \cdots g_{k}\left(n_{k}\right) / n_{1} \cdots n_{k}}{\log \left(\xi_{1} / n_{1}\right) \cdots \log \left(\xi_{k} / n_{k}\right)} \\
= & \\
& \times x\left(g_{1}+\cdots+g_{k}\right) \\
& \left.x(\log d u)^{k}\right)\left(1+O\left(\frac{1}{\log x}\right)\right) .
\end{aligned}
$$

Recall: $\xi_{j}=f_{j}(x) \approx x^{d}$, and we care about $y=x^{1 / u}$. Then $\log \left(\log \xi_{j} / \log y\right) \sim \log d u$.

We have the order of magnitude $x(\log d u)^{k}$ we wanted ... but what about the local factors $H(f) c\left(g_{1}+\cdots+g_{k}\right)$?

Friable values of polynomials

Introduction

Erither vaturas of oot nomials

Bounds for friable

How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

- $c(g)=\rrbracket\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right.$

We have $g_{j}\left(p^{\nu}\right)=\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\sigma\left(f_{j} ; p^{\nu}\right)-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p}\right)$,

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions
Summary

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

values of polynomials

$$
=\frac{1}{p^{\nu}} \sum_{j=1}^{k}\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma\left(f_{j} ; p^{\nu}\right)}{p^{\nu}}-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p^{\nu+1}}\right)
$$

Statement of the conjecture

Reduction to convenient

 polynomialsTranslation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

- $c(g)=\prod$

$$
1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots
$$

We have $g_{j}\left(p^{\nu}\right)=\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\sigma\left(f_{j} ; p^{\nu}\right)-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p}\right)$, and so $\frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}}$

$$
\begin{aligned}
& =\frac{1}{p^{\nu}} \sum_{j=1}^{k}\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma\left(f_{j} ; p^{\nu}\right)}{p^{\nu}}-\frac{\sigma\left(f_{j} ; p^{\nu+1}\right)}{p^{\nu+1}}\right) \\
& =\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma\left(f ; p^{\nu}\right)}{p^{\nu}}-\frac{\sigma\left(f ; p^{\nu+1}\right)}{p^{\nu+1}}\right)
\end{aligned}
$$

Friable values of polynomials

Greg Martin

Introduction
Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
since the f_{j} have no common roots modulo p.

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

- $c(g)=\prod\left(1-\frac{1}{p}\right)^{a}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right.$

Therefore

$$
\begin{aligned}
& 1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}} \\
& =1+\sum_{\nu=1}^{\infty}\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma\left(f ; p^{\nu}\right)}{p^{\nu}}-\frac{\sigma\left(f ; p^{\nu+1}\right)}{p^{\nu+1}}\right)
\end{aligned}
$$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of specia polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors
Sums of multiplicative functions

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

- $H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)$

- $c(g)=1$

$$
1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots
$$

Therefore

$$
\begin{aligned}
& 1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}} \\
& =1+\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1} \sum_{\nu=1}^{\infty}\left(\frac{\sigma\left(f ; p^{\nu}\right)}{p^{\nu}}-\frac{\sigma\left(f ; p^{\nu+1}\right)}{p^{\nu+1}}\right)
\end{aligned}
$$

This is a telescoping sum

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture

Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of general polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

Friable values of polynomials

- $H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)$
- $c(g)=\prod\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right.$

Therefore

$$
\begin{aligned}
& 1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}} \\
& =1+\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma(f ; p)}{p}\right)
\end{aligned}
$$

This is a telescoping sum . . . tada!

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable values of polynomials

Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

- $c(g)=\prod_{p}\left(1-\frac{1}{p}\right)$

$$
1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots
$$

Therefore

$$
\begin{aligned}
& 1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}} \\
& =1+\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}\left(\frac{\sigma(f ; p)}{p}\right)=\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1} .
\end{aligned}
$$

And this whole expression simplifies ... nicely.

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H
Conjecture for friable
values of polynomials
Statement of the conjecture
Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

$$
\text { - } H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

$$
\text { - } c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

We conclude that

$$
\begin{array}{rl}
H(f) c & C\left(g_{1}+\cdots+g_{k}\right) \\
& =H(f) \prod_{p}\left(1-\frac{1}{p}\right)^{k}\left(1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}}\right) \\
& =H(f) \prod_{p}\left(1-\frac{1}{p}\right)^{k}\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}
\end{array}
$$

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

 values of polynomials
Statement of the conjecture

Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

The magic moment for $H(f) c\left(g_{1}+\cdots+g_{k}\right)$

$$
\text { - } H(f)=\prod_{p}\left(1-\frac{1}{p}\right)^{-k}\left(1-\frac{\sigma(f ; p)}{p}\right)
$$

$$
\text { - } c(g)=\prod_{p}\left(1-\frac{1}{p}\right)^{\alpha}\left(1+\frac{g(p)}{p}+\frac{g\left(p^{2}\right)}{p^{2}}+\cdots\right)
$$

We conclude that

$$
\begin{aligned}
& H(f) c\left(g_{1}+\cdots+g_{k}\right) \\
&=H(f) \prod_{p}\left(1-\frac{1}{p}\right)^{k}\left(1+\sum_{\nu=1}^{\infty} \frac{\left(g_{1}+\cdots+g_{k}\right)\left(p^{\nu}\right)}{p^{\nu}}\right) \\
&=H(f) \prod_{p}\left(1-\frac{1}{p}\right)^{k}\left(1-\frac{\sigma(f ; p)}{p}\right)^{-1}=1
\end{aligned}
$$

... amazing!

Friable values of polynomials

Greg Martin

Introduction

Friable integers
Friable values of polynomials

Bounds for friable

values of polynomials
How friable can values of special polynomials be?
How friable can values of genera polynomials be?
Can we have lots of friable values?
Conjecture for prime values of polynomials
Schinzel's "Hypothesis H"
(Bateman-Horn conjecture)
A uniform version of Hypothesis H

Conjecture for friable

 values of polynomials
Statement of the conjecture

Reduction to convenient
polynomials
Translation into prime values of polynomials
Shepherding the local factors

Summary

- There are lots of open problems concerning friable values of polynomials-and many possible improvements from a single clever new idea.
- The asymptotics for friable values of polynomials depends on the degrees of their irreducible factors-but shouldn't depend on the polynomial otherwise.

Notes to be placed on web page

www.math.ubc.ca/~gerg/talks.html

