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Introducing the multiplicative group

Notation
For every positive integer n, the integers have a quotient
ring Z/nZ with n elements.
If we ignore multiplication, we get the additive group Z+

n . It
is always a cyclic group of order n.
If we instead ignore addition: the multiplicative group Z×n is
the set (Z/nZ)× of invertible elements in Z/nZ under its
multiplication. It is some finite abelian group with φ(n)
elements.

Overarching theme
Questions about the family {Z×n }∞n=1 of multiplicative groups are
usually analytic number theory opportunities in disguise.

Statistics of the multiplicative group Greg Martin



Introduction Structure of Z×
n More primary/invariant decomposition Subgroups of Z×

n

The Euler phi-function

Definition
The Euler totient function φ(n) is the number of integers in
{1, . . . , n} that are relatively prime to n.

Statistics we care about
The maximal order of φ(n) is n− 1

The minimal order of φ(n) is (e−γ + o(1))
n

log log n

The average order of φ(n) is
6
π2 n, meaning that

∑
n≤x

φ(n) =

(
3
π2 + o(1)

)
x2 =

∑
n≤x

6
π2 n
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What is the distribution of φ(n)?
Since φ(n)→∞, it doesn’t have a limiting distribution as is. But
if we normalize φ(n) by dividing it by n, we can obtain a limiting
distribution.

The result
The graph shows the
cumulative distribution
function F(t) for φ(n)/n.
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1
x

#

{
n ≤ x :

φ(n)

n
≤ t
}

= F(t)

An unusual function
F(t) is continuous everywhere, but it is a singular function—its
derivative equals 0 almost everywhere.
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The structure of the multiplicative group

Other questions depend on the structure of Z×n , not just its size.

Square roots of unity
The number of solutions to x2 ≡ 1 (mod n) is 2ω(n) when n is odd.

Here ω(n) is the number of distinct prime factors of n.

Theorem (Finch & M. & Sebah, 2010)
The average order of the number of solutions to xk ≡ 1 (mod n)

is
1
x

∑
n≤x

#{xk ≡ 1 (mod n)} ∼ Ck(log x)τ(k)−1, where τ(k) is the

number of positive divisors of k (and Ck is an explicit constant).
Note: this is also the average order of the number of
Dirichlet characters (mod n) of order k
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One canonical form: primary decomposition

Theorem
Every finite abelian group has a unique primary factor
decomposition (or elementary divisor decomposition) as the
direct sum of cyclic groups of prime-power order.

Example: n = 11!

Z×11!
∼= Z+

2 ⊕ Z+
2 ⊕ Z+

2 ⊕ Z+
2 ⊕ Z+

3 ⊕ Z+
4 ⊕ Z+

5 ⊕ Z+
5 ⊕ Z+

27 ⊕ Z+
64

How do we get that?
It turns out to be straightforward to determine the primary
decomposition of Z×n , using the Chinese remainder theorem
and the fact that odd prime powers always have primitive roots.

even prime powers are understood, but irritating
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Primary decomposition example

Example: n = 11! = 28 · 34 · 52 · 7 · 11
By the Chinese remainder theorem,

Z×11!
∼= Z×28 × Z×34 × Z×52 × Z×7 × Z×11.

For each odd prime power, Z×pr is cyclic of order φ(pr):

Z×11!
∼= (Z+

64 ⊕ Z+
2 )⊕ Z+

54 ⊕ Z+
20 ⊕ Z+

6 ⊕ Z+
10.

Again we use the Chinese remainder theorem on each factor:

Z×11!
∼= (Z+

64⊕Z
+
2 )⊕(Z+

27⊕Z
+
2 )⊕(Z+

5 ⊕Z
+
4 )⊕(Z+

3 ⊕Z
+
2 )⊕(Z+

5 ⊕Z
+
2 ).
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Another canonical form: invariant factor decomposition

Theorem
Every finite abelian group has a unique invariant factor
decomposition as the direct sum of cyclic groups Z+

d1
, . . . , Z+

dk
where d1 | d2 | · · · | dk.

Example: n = 11!

Z×11!
∼= Z+

2 ⊕ Z+
2 ⊕ Z+

2 ⊕ Z+
2 ⊕ Z+

4 ⊕ Z+
64

⊕ Z+
3 ⊕ Z+

27

⊕ Z+
5 ⊕ Z+

5
∼= Z+

2 ⊕ Z+
2 ⊕ Z+

2 ⊕ Z+
12 ⊕ Z+

60 ⊕ Z+
8640
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The Carmichael lambda-function

Invariant factor decomposition
Z×n ∼= Z+

d1
⊕ Z+

d2
⊕ · · · ⊕ Z+

dk
where d1 | d2 | · · · | dk

The largest invariant factor
dk equals the Carmichael function value λ(n), which is the
largest order of any element of Z×n (the “exponent” of Z×n ).

Theorem (Erdős & Pomerance, 1991)
For almost all integers n, we have λ(n) = n/(log n)log log log n+O(1).

much smaller than φ(n)� n/ log log n

Theorem (M. & Pomerance, 2005)
λ(λ(n)) = n/(log n)(1+o(1))(log log log n)2

for almost all integers n.
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The number of prime factors

Length of the invariant factor decomposition
If Z×n ∼= Z+

d1
⊕ · · · ⊕ Z+

dk
where d1 | d2 | · · · | dk, then k = ω(n) (the

number of distinct prime factors of n) when n is odd.

The size of ω(n)

maximal order: (1 + o(1))
log n

log log n

average order:
1
x

∑
n≤x

ω(n) ∼ log log x.

Its sibling
Ω(n): the number of prime factors of n counted with multiplicity.

same average order as ω(n); maximal order
log n
log 2

Statistics of the multiplicative group Greg Martin



Introduction Structure of Z×
n More primary/invariant decomposition Subgroups of Z×

n

The number of prime factors

The Hardy–Ramanujan theorem (1917)
The normal order of ω(n) is log log n: for every ε > 0, the set
{n ∈ N : (1− ε) log log n < ω(n) < (1 + ε) log log n} has density 1.

ω(n) ∼ log log n for almost all integers n

The Erdős–Kac theorem (1940)
ω(n) acts like a normal random variable with mean log log n and
variance log log n: the cumulative distribution function of
(ω(n)− log log n)/

√
log log n is

lim
x→∞

1
x

#

{
n ≤ x :

ω(n)− log log n
(log log n)1/2 < t

}
=

1√
2π

∫ t

−∞
e−u2/2 du.

Both statements remain true with Ω(n) in place of ω(n)
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How many terms in the primary decomposition?

Exercise
If the finite abelian group G has m elements, then the number of
terms in the primary decomposition of G is at least ω(m) and at
most Ω(m). In particular, the length of the primary
decomposition of Z×n is between ω(φ(n)) and Ω(φ(n)).

Theorem (Erdős & Pomerance, 1985)
ω(φ(n)) and Ω(φ(n)) each acts like a normal random variable
with mean 1

2(log log n)2 and variance 1
3(log log n)3:

1
x

#

{
n ≤ x :

ω(φ(n))− 1
2(log log n)2√

1
3(log log n)3

< t
}
→ 1√

2π

∫ t

−∞
e−u2/2 du.

Therefore the same is true of the length of the primary
decomposition of Z×n .
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The largest primary factor: a bit mysterious

What we do know
If P(n) denotes the largest
prime factor of n, then
log n

log P(n) has a cumulative
distribution function
1− ρ(u), where ρ is the
Dickman–de Bruijn function.

ρ′(u) = −ρ(u− 1)

u
(u > 1)

What we expect
We should get the same
distribution on shifted primes:
log(p−1)
log P(p−1) .

But we don’t even know that
there are infinitely many p for
which this is > 3.52. (Lichtman,
2022 preprint)

Largest primary factor of Z×n ≈
largest prime factor of P(n)− 1.

Precise conjecture can be
made (essentially by
Lamzouri, 2007)
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The smallest invariant factor: statements
Most Z×n have 2 as an invariant factor. In fact:

Theorem (Chang & M., 2020)
The number of integers n ≤ x for which the least invariant factor

of Z×n does not equal 2 is C
x√

log x
+ O

(
x

(log x)3/4−ε

)
, where

C ≈ 1.01782 is given by

C =
3

25/2

∏
p≡3 (mod 4)

(
1− 1

p2

)1/2

+
7

25/233/4

∏
p≡5 (mod 6)

(
1− 1

p2

)1/2

.

Further theorem
For any even m ≥ 4, the number of integers n ≤ x for which

the least invariant factor of Z×n equals m is ∼ Cm
x

(log x)1−1/φ(m)

for some explicit constant Cm.
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The smallest invariant factor: proof method

Application of the Selberg–Delange method
The Selberg–Delange method can be used to count integers
whose prime factors all come from some set S of primes.

The Dirichlet series FS(s) =
∑
n∈N

p|n =⇒ p∈S

n−s =
∏
p∈S

(1− p−s)−1

acts like a “fractional power of ζ(s)”: if S has density δ, then
FS(s)ζ(s)−δ is analytic near s = 1.
Result: #{n ≤ x : p | n =⇒ p ∈ S} ∼ CSx/(log x)1−δ

Lemma
Fix an even number m ≥ 4. The least invariant factor of Z×n is a
multiple of m if and only if all of the following conditions hold:

1 for primes p - m: if p | n then we must have p ≡ 1 (mod m);
2 4 - n; and (some condition for odd primes p | m)
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The smallest primary factor: statements
Most Z×n have 2 as a primary factor. In fact:

Theorem (M. & Nguyen, in progress)
The number of integers n ≤ x for which the least primary factor

of Z×n does not equal 2 is D
x√

log x
+ O

(
x

(log x)2/3

)
, where

D ≈ 0.490694 is given by D =
3

25/2

∏
p≡3 (mod 4)

(
1− 1

p2

)1/2

.

Further theorem
For any prime power q ≥ 3, the number of integers n ≤ x for

which the least primary factor of Z×n equals q is ∼ Dq
x

(log x)βq

for some explicit constants Dq and βq.

uses the Selberg–Delange formulation in Chang & M.
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Universal profile of invariant factors (M. & Simpson)

Almost all Z×n have among their invariant factors:

∼ 1
2 log log n copies of Z+

2 ,
∼ 1

4 log log n copies of Z+
12,

∼ 1
12 log log n copies of Z+

120,
∼ 1

24 log log n copies of Z+
2520,

∼ 1
40 log log n copies of Z+

5040,
∼ 1

60 log log n copies of Z+
55440, . . .

These have (interesting) distributions as well
For example, the number of copies of Z+

2 has mean and
variance 1

2 log log n . . . but the normalized number of copies
doesn’t tend to a normal random variable, but rather the
minimum of two normal random variables!
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Prohibiting a subgroup

Problem
Let q be an odd prime. How many multiplicative groups Z×n
have no subgroup isomorphic to Z+

q ?

Translation to number theory
Z×n has no subgroup isomorphic to Z+

q if and only if both
p | n =⇒ p 6≡ 1 (mod q) and q2 - n.

Counting such integers is a classic application of the
Selberg–Delange method; their counting function will be
asymptotically Eqx/(log x)1/φ(q) for some constant Eq.

Statistics of the multiplicative group Greg Martin



Introduction Structure of Z×
n More primary/invariant decomposition Subgroups of Z×

n

Prescribing a subgroup

Definition (q is an odd prime throughout)
The q-Sylow subgroup of a finite abelian group G is the largest
subgroup of G whose cardinality is a power of q.

“G has no subgroup isomorphic to Z+
q ” is the same as

“the q-Sylow subgroup of G is trivial”

So the classical question of counting integers without prime
factors congruent to 1 (mod q) can be generalized to counting
integers with a specific q-Sylow subgroup. (idea: Colin Weir)

Theorem (Downey & M., 2019)
If G = Z+

qα1 ⊕ · · · ⊕ Z+
qαk , then the number of integers n ≤ x such

that the q-Sylow subgroup of Z×n equals G is asymptotically

EG
x(log log x)k

(log x)1/(q−1) for some explicit constant EG.

Statistics of the multiplicative group Greg Martin



Introduction Structure of Z×
n More primary/invariant decomposition Subgroups of Z×

n

How many subgroups? (I)

Definition
Let I(n) denote the number of subgroups of Z×n up to
isomorphism.

M. & Troupe (2020) showed that log I(n)
log 2 is between ω(φ(n)) and

Ω(φ(n)). An immediate consequence:

Theorem (Erdős & Pomerance, 1985)
ω(φ(n)) and Ω(φ(n)) each acts like a normal random variable
with mean 1

2(log log n)2 and variance 1
3(log log n)3:

1
x

#

{
n ≤ x :

ω(φ(n))− 1
2(log log n)2√

1
3(log log n)3

< t
}
→ 1√

2π

∫ t

−∞
e−u2/2 du.

Therefore the same is true of log I(n)
log 2 .
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How many subgroups? (II)

Definition
Let G(n) denote the number of subgroups of Z×n , counting each
subgroup separately even if some are isomorphic to others.

Theorem (M. & Troupe, 2020)
log G(n) acts like a normal random variable with mean
A(log log n)2 and variance B(log log n)3, for certain A,B > 0:

1
x

#

{
n ≤ x :

log G(n)− A(log log n)2√
B(log log n)3

< t
}
→ 1√

2π

∫ t

−∞
e−u2/2 du.

Maximal order

There are infinitely many n for which log G(n) >
1

17
(log n)2

log log n
.

In particular, G(n)� n2023! infinitely often!
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Your favourite group

A nice exercise
Show that any given finite abelian group G is a subgroup of Z×n
for infinitely many positive integers n.

Proof
Write G ∼= Z+

d1
⊕ · · · ⊕ Z+

dk
. There are infinitely many primes

pj ≡ 1 (mod dj), and for each such prime, Z+
dj

is a subgroup of
Z×pj
∼= Z+

pj−1. Then G is a subgroup of Z×p1···pk
∼= Z×p1

× · · · × Z×pk
.

Project for a future collaboration
But more is true: G should be a subgroup of Z×n for almost all
integers n! An asymptotic formula for the exceptions should
follow from the techniques in my paper with Downey.
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