Statistics of the multiplicative group

Greg Martin University of British Columbia

UBC Number Theory Seminar November 2, 2023

slides can be found on my web page
www.math.ubc.ca/~gerg/index.shtml?slides

Outline

- 2 Structure of the multiplicative group \mathbb{Z}_n^{\times}
- 3 More about the primary and invariant decompositions of \mathbb{Z}_n^{\times}
- 4 Subgroups of the multiplicative group $\mathbb{Z}_n^{ imes}$

Introduction •oo

Introducing the multiplicative group

Notation

- For every positive integer *n*, the integers have a quotient ring ℤ/nℤ with *n* elements.
- If we ignore multiplication, we get the additive group Z⁺_n. It is always a cyclic group of order *n*.
- If we instead ignore addition: the multiplicative group Z_n[×] is the set (Z/nZ)[×] of invertible elements in Z/nZ under its multiplication. It is some finite abelian group with φ(n) elements.

Overarching theme

Questions about the family $\{\mathbb{Z}_n^{\times}\}_{n=1}^{\infty}$ of multiplicative groups are usually analytic number theory opportunities in disguise.

Structure of \mathbb{Z}_n^{\times}

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The Euler phi-function

Definition

The Euler totient function $\phi(n)$ is the number of integers in $\{1, \ldots, n\}$ that are relatively prime to *n*.

Statistics we care about

- The maximal order of $\phi(n)$ is n-1
- The minimal order of $\phi(n)$ is $(e^{-\gamma} + o(1)) \frac{n}{\log \log n}$
- The average order of $\phi(n)$ is $\frac{6}{\pi^2}n$, meaning that

$$\sum_{n \le x} \phi(n) = \left(\frac{3}{\pi^2} + o(1)\right) x^2 = \sum_{n \le x} \frac{6}{\pi^2} n$$

What is the distribution of $\phi(n)$?

Since $\phi(n) \to \infty$, it doesn't have a limiting distribution as is. But if we normalize $\phi(n)$ by dividing it by *n*, we can obtain a limiting distribution.

An unusual function

F(t) is continuous everywhere, but it is a singular function—its derivative equals 0 almost everywhere.

The structure of the multiplicative group

Other questions depend on the structure of \mathbb{Z}_n^{\times} , not just its size.

Square roots of unity

The number of solutions to $x^2 \equiv 1 \pmod{n}$ is $2^{\omega(n)}$ when *n* is odd.

• Here $\omega(n)$ is the number of distinct prime factors of *n*.

Theorem (Finch & M. & Sebah, 2010)

The average order of the number of solutions to $x^k \equiv 1 \pmod{n}$

is $\frac{1}{x} \sum_{n \le x} \# \{ x^k \equiv 1 \pmod{n} \} \sim C_k (\log x)^{\tau(k)-1}$, where $\tau(k)$ is the

number of positive divisors of k (and C_k is an explicit constant).

• Note: this is also the average order of the number of Dirichlet characters (mod *n*) of order *k*

Subgroups of \mathbb{Z}_n^{\times}

One canonical form: primary decomposition

Theorem

Every finite abelian group has a unique primary factor decomposition (or elementary divisor decomposition) as the direct sum of cyclic groups of prime-power order.

Example: n = 11!

 $\mathbb{Z}_{11!}^{\times}\cong\mathbb{Z}_2^+\oplus\mathbb{Z}_2^+\oplus\mathbb{Z}_2^+\oplus\mathbb{Z}_2^+\oplus\mathbb{Z}_3^+\oplus\mathbb{Z}_4^+\oplus\mathbb{Z}_5^+\oplus\mathbb{Z}_5^+\oplus\mathbb{Z}_{27}^+\oplus\mathbb{Z}_{64}^+$

How do we get that?

It turns out to be straightforward to determine the primary decomposition of \mathbb{Z}_n^{\times} , using the Chinese remainder theorem and the fact that odd prime powers always have primitive roots.

even prime powers are understood, but irritating

Structure of \mathbb{Z}_n^{\times}

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

Primary decomposition example

Example: $n = 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11$

By the Chinese remainder theorem,

$$\mathbb{Z}_{11!}^{\times} \cong \mathbb{Z}_{2^8}^{\times} \times \mathbb{Z}_{3^4}^{\times} \times \mathbb{Z}_{5^2}^{\times} \times \mathbb{Z}_7^{\times} \times \mathbb{Z}_{11}^{\times}.$$

For each odd prime power, $\mathbb{Z}_{p^r}^{\times}$ is cyclic of order $\phi(p^r)$:

$$\mathbb{Z}_{11!}^{\times} \cong (\mathbb{Z}_{64}^+ \oplus \mathbb{Z}_2^+) \oplus \mathbb{Z}_{54}^+ \oplus \mathbb{Z}_{20}^+ \oplus \mathbb{Z}_6^+ \oplus \mathbb{Z}_{10}^+.$$

Again we use the Chinese remainder theorem on each factor:

 $\mathbb{Z}_{11!}^{\times}\cong(\mathbb{Z}_{64}^+\oplus\mathbb{Z}_2^+)\oplus(\mathbb{Z}_{27}^+\oplus\mathbb{Z}_2^+)\oplus(\mathbb{Z}_5^+\oplus\mathbb{Z}_4^+)\oplus(\mathbb{Z}_3^+\oplus\mathbb{Z}_2^+)\oplus(\mathbb{Z}_5^+\oplus\mathbb{Z}_2^+).$

Another canonical form: invariant factor decomposition

Theorem

Every finite abelian group has a unique invariant factor decomposition as the direct sum of cyclic groups $\mathbb{Z}_{d_1}^+, \ldots, \mathbb{Z}_{d_k}^+$ where $d_1 \mid d_2 \mid \cdots \mid d_k$.

Example: n = 11! $\mathbb{Z}_{11!}^{\times} \cong \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{4}^{+} \oplus \mathbb{Z}_{64}^{+}$ $\oplus \mathbb{Z}_{3}^{+} \oplus \mathbb{Z}_{27}^{+}$ $\oplus \mathbb{Z}_{5}^{+} \oplus \mathbb{Z}_{5}^{+}$ $\cong \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{12}^{+} \oplus \mathbb{Z}_{60}^{+} \oplus \mathbb{Z}_{8640}^{+}$

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The Carmichael lambda-function

Invariant factor decomposition

$$\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{d_1}^+ \oplus \mathbb{Z}_{d_2}^+ \oplus \cdots \oplus \mathbb{Z}_{d_k}^+$$
 where $d_1 \mid d_2 \mid \cdots \mid d_k$

The largest invariant factor

 d_k equals the Carmichael function value $\lambda(n)$, which is the largest order of any element of \mathbb{Z}_n^{\times} (the "exponent" of \mathbb{Z}_n^{\times}).

Theorem (Erdős & Pomerance, 1991)

For almost all integers *n*, we have $\lambda(n) = n/(\log n)^{\log \log \log n + O(1)}$.

• much smaller than $\phi(n) \gg n/\log \log n$

Theorem (M. & Pomerance, 2005)

 $\lambda(\lambda(n)) = n/(\log n)^{(1+o(1))(\log \log \log n)^2}$ for almost all integers *n*.

Structure of \mathbb{Z}_n^{\times}

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The number of prime factors

Length of the invariant factor decomposition

If $\mathbb{Z}_n^{\times} \cong \mathbb{Z}_{d_1}^+ \oplus \cdots \oplus \mathbb{Z}_{d_k}^+$ where $d_1 \mid d_2 \mid \cdots \mid d_k$, then $k = \omega(n)$ (the number of distinct prime factors of *n*) when *n* is odd.

The size of $\omega(n)$

• maximal order:
$$(1 + o(1)) \frac{\log n}{\log \log n}$$

• average order: $\frac{1}{x} \sum_{n \le x} \omega(n) \sim \log \log x$

Its sibling

Ω(n): the number of prime factors of *n* counted with multiplicity.
same average order as ω(n); maximal order log n/log 2

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The number of prime factors

The Hardy–Ramanujan theorem (1917)

The normal order of $\omega(n)$ is $\log \log n$: for every $\varepsilon > 0$, the set $\{n \in \mathbb{N} : (1 - \varepsilon) \log \log n < \omega(n) < (1 + \varepsilon) \log \log n\}$ has density 1.

• $\omega(n) \sim \log \log n$ for almost all integers n

The Erdős–Kac theorem (1940)

 $\omega(n) \text{ acts like a normal random variable with mean } \log \log n \text{ and } variance } \log \log n \text{ : the cumulative distribution function of } (\omega(n) - \log \log n) / \sqrt{\log \log n} \text{ is}$ $\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x \text{ : } \frac{\omega(n) - \log \log n}{(\log \log n)^{1/2}} < t \right\} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{t} e^{-u^2/2} du.$

• Both statements remain true with $\Omega(n)$ in place of $\omega(n)$

How many terms in the primary decomposition?

Exercise

If the finite abelian group *G* has *m* elements, then the number of terms in the primary decomposition of *G* is at least $\omega(m)$ and at most $\Omega(m)$. In particular, the length of the primary decomposition of \mathbb{Z}_n^{\times} is between $\omega(\phi(n))$ and $\Omega(\phi(n))$.

Theorem (Erdős & Pomerance, 1985)

 $\omega(\phi(n))$ and $\Omega(\phi(n))$ each acts like a normal random variable with mean $\frac{1}{2}(\log \log n)^2$ and variance $\frac{1}{3}(\log \log n)^3$:

$$\frac{1}{x} \# \left\{ n \le x \colon \frac{\omega(\phi(n)) - \frac{1}{2} (\log \log n)^2}{\sqrt{\frac{1}{3} (\log \log n)^3}} < t \right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-u^2/2} \, du.$$

Therefore the same is true of the length of the primary decomposition of \mathbb{Z}_n^{\times} .

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The largest primary factor: a bit mysterious

What we do know

If P(n) denotes the largest prime factor of n, then $\frac{\log n}{\log P(n)}$ has a cumulative distribution function $1 - \rho(u)$, where ρ is the Dickman–de Bruijn function.

What we expect

We should get the same distribution on shifted primes: $\frac{\log(p-1)}{\log P(p-1)}$. But we don't even know that there are infinitely many *p* for which this is > 3.52. (Lichtman, 2022 preprint)

Largest primary factor of $\mathbb{Z}_n^{\times} \approx$ largest prime factor of P(n) - 1.

 Precise conjecture can be made (essentially by Lamzouri, 2007)

The smallest invariant factor: statements

Most \mathbb{Z}_n^{\times} have 2 as an invariant factor. In fact:

Theorem (Chang & M., 2020)

The number of integers $n \le x$ for which the least invariant factor

of
$$\mathbb{Z}_n^{\times}$$
 does not equal 2 is $C \frac{x}{\sqrt{\log x}} + O\left(\frac{x}{(\log x)^{3/4-\varepsilon}}\right)$, where $C \approx 1.01782$ is given by

$$C = \frac{3}{2^{5/2}} \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{1}{p^2}\right)^{1/2} + \frac{7}{2^{5/2} 3^{3/4}} \prod_{p \equiv 5 \pmod{6}} \left(1 - \frac{1}{p^2}\right)^{1/2}.$$

Further theorem

For any even $m \ge 4$, the number of integers $n \le x$ for which the least invariant factor of \mathbb{Z}^{\times} equals m is $x \in C$

the least invariant factor of \mathbb{Z}_n^{\times} equals *m* is $\sim C_m \frac{x}{(\log x)^{1-1/\phi(m)}}$ for some explicit constant C_m .

The smallest invariant factor: proof method

Application of the Selberg–Delange method

The Selberg–Delange method can be used to count integers whose prime factors all come from some set S of primes.

• The Dirichlet series $F_{\mathcal{S}}(s) = \sum_{\substack{n \in \mathbb{N} \\ p \mid n \implies p \in \mathcal{S}}} n^{-s} = \prod_{p \in \mathcal{S}} (1 - p^{-s})^{-1}$

acts like a "fractional power of $\zeta(s)$ ": if S has density δ , then $F_{S}(s)\zeta(s)^{-\delta}$ is analytic near s = 1.

• Result:
$$\#\{n \le x \colon p \mid n \implies p \in \mathcal{S}\} \sim C_{\mathcal{S}} x / (\log x)^{1-\delta}$$

Lemma

Fix an even number $m \ge 4$. The least invariant factor of \mathbb{Z}_n^{\times} is a multiple of *m* if and only if all of the following conditions hold:

• for primes $p \nmid m$: if $p \mid n$ then we must have $p \equiv 1 \pmod{m}$;

2 4 \nmid *n*; and (some condition for odd primes *p* | *m*)

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

The smallest primary factor: statements

Most \mathbb{Z}_n^{\times} have 2 as a primary factor. In fact:

Theorem (M. & Nguyen, in progress)

The number of integers $n \le x$ for which the least primary factor

of
$$\mathbb{Z}_n^{\times}$$
 does not equal 2 is $D \frac{x}{\sqrt{\log x}} + O\left(\frac{x}{(\log x)^{2/3}}\right)$, where
 $D \approx 0.490694$ is given by $D = \frac{3}{2^{5/2}} \prod_{p \equiv 3 \pmod{4}} \left(1 - \frac{1}{p^2}\right)^{1/2}$.

Further theorem

For any prime power $q \ge 3$, the number of integers $n \le x$ for which the least primary factor of \mathbb{Z}_n^{\times} equals q is $\sim D_q \frac{x}{(\log x)^{\beta_q}}$ for some explicit constants D_q and β_q .

• uses the Selberg–Delange formulation in Chang & M.

Universal profile of invariant factors (M. & Simpson)

Almost all \mathbb{Z}_n^{\times} have among their invariant factors:

- $\sim \frac{1}{2} \log \log n$ copies of \mathbb{Z}_2^+ ,
- $\sim \frac{1}{4} \log \log n$ copies of \mathbb{Z}_{12}^+ ,
- $\sim \frac{1}{12} \log \log n$ copies of \mathbb{Z}^+_{120} ,
- $\sim \frac{1}{24} \log \log n$ copies of \mathbb{Z}^+_{2520} ,
- $\sim \frac{1}{40} \log \log n$ copies of \mathbb{Z}^+_{5040} ,
- $\sim \frac{1}{60} \log \log n$ copies of $\mathbb{Z}^+_{55440}, \ldots$

These have (interesting) distributions as well

For example, the number of copies of \mathbb{Z}_2^+ has mean and variance $\frac{1}{2} \log \log n \dots$ but the normalized number of copies doesn't tend to a normal random variable, but rather the minimum of two normal random variables!

Structure of \mathbb{Z}_n^{\times}

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

Prohibiting a subgroup

Problem

Let *q* be an odd prime. How many multiplicative groups \mathbb{Z}_n^{\times} have no subgroup isomorphic to \mathbb{Z}_q^+ ?

Translation to number theory

 \mathbb{Z}_n^{\times} has no subgroup isomorphic to \mathbb{Z}_q^+ if and only if both $p \mid n \implies p \not\equiv 1 \pmod{q}$ and $q^2 \nmid n$.

Counting such integers is a classic application of the Selberg–Delange method; their counting function will be asymptotically $E_q x/(\log x)^{1/\phi(q)}$ for some constant E_q .

Structure of \mathbb{Z}_n^{\times}

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

Prescribing a subgroup

Definition (q is an odd prime throughout)

The q-Sylow subgroup of a finite abelian group G is the largest subgroup of G whose cardinality is a power of q.

• "*G* has no subgroup isomorphic to \mathbb{Z}_q^+ " is the same as "the *q*-Sylow subgroup of *G* is trivial"

So the classical question of counting integers without prime factors congruent to $1 \pmod{q}$ can be generalized to counting integers with a specific *q*-Sylow subgroup. (idea: Colin Weir)

Theorem (Downey & M., 2019)

If $G = \mathbb{Z}_{q^{\alpha_1}}^+ \oplus \cdots \oplus \mathbb{Z}_{q^{\alpha_k}}^+$, then the number of integers $n \leq x$ such that the *q*-Sylow subgroup of \mathbb{Z}_n^{\times} equals *G* is asymptotically $E_G \frac{x(\log \log x)^k}{(\log x)^{1/(q-1)}}$ for some explicit constant E_G .

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

How many subgroups? (I)

Definition

Let I(n) denote the number of subgroups of \mathbb{Z}_n^{\times} up to isomorphism.

M. & Troupe (2020) showed that $\frac{\log I(n)}{\log 2}$ is between $\omega(\phi(n))$ and $\Omega(\phi(n))$. An immediate consequence:

Theorem (Erdős & Pomerance, 1985)

 $\omega(\phi(n))$ and $\Omega(\phi(n))$ each acts like a normal random variable with mean $\frac{1}{2}(\log \log n)^2$ and variance $\frac{1}{3}(\log \log n)^3$:

$$\frac{1}{x} \# \left\{ n \le x \colon \frac{\omega(\phi(n)) - \frac{1}{2} (\log \log n)^2}{\sqrt{\frac{1}{3} (\log \log n)^3}} < t \right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-u^2/2} \, du.$$

Therefore the same is true of $\frac{\log I(n)}{\log 2}$.

More primary/invariant decomposition

Subgroups of \mathbb{Z}_n^{\times}

How many subgroups? (II)

Definition

Let G(n) denote the number of subgroups of \mathbb{Z}_n^{\times} , counting each subgroup separately even if some are isomorphic to others.

Theorem (M. & Troupe, 2020)

 $\log G(n)$ acts like a normal random variable with mean $A(\log \log n)^2$ and variance $B(\log \log n)^3$, for certain A, B > 0:

$$\frac{1}{x} \# \left\{ n \le x \colon \frac{\log G(n) - A(\log \log n)^2}{\sqrt{B(\log \log n)^3}} < t \right\} \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^t e^{-u^2/2} \, du.$$

Maximal order

There are infinitely many *n* for which $\log G(n) > \frac{1}{17} \frac{(\log n)^2}{\log \log n}$

• In particular, $G(n) \gg n^{2023!}$ infinitely often!

Subgroups of \mathbb{Z}_n^{\times}

Your favourite group

A nice exercise

Show that any given finite abelian group *G* is a subgroup of \mathbb{Z}_n^{\times} for infinitely many positive integers *n*.

Proof

Write $G \cong \mathbb{Z}_{d_1}^+ \oplus \cdots \oplus \mathbb{Z}_{d_k}^+$. There are infinitely many primes $p_j \equiv 1 \pmod{d_j}$, and for each such prime, $\mathbb{Z}_{d_j}^+$ is a subgroup of $\mathbb{Z}_{p_j}^\times \cong \mathbb{Z}_{p_j-1}^+$. Then *G* is a subgroup of $\mathbb{Z}_{p_1\cdots p_k}^\times \cong \mathbb{Z}_{p_1}^\times \times \cdots \times \mathbb{Z}_{p_k}^\times$.

Project for a future collaboration

But more is true: *G* should be a subgroup of \mathbb{Z}_n^{\times} for almost all integers *n*! An asymptotic formula for the exceptions should follow from the techniques in my paper with Downey.