Statistics of the multiplicative group

Greg Martin
University of British Columbia

UBC Number Theory Seminar November 2, 2023
slides can be found on my web page
www.math.ubc.ca/~gerg/index.shtml?slides

Outline

(1) Introduction to multiplicative groups
(2) Structure of the multiplicative group \mathbb{Z}_{n}^{\times}
(3) More about the primary and invariant decompositions of \mathbb{Z}_{n}^{\times}
(4) Subgroups of the multiplicative group \mathbb{Z}_{n}^{\times}

Introducing the multiplicative group

Notation

- For every positive integer n, the integers have a quotient ring $\mathbb{Z} / n \mathbb{Z}$ with n elements.
- If we ignore multiplication, we get the additive group \mathbb{Z}_{n}^{+}. It is always a cyclic group of order n.
- If we instead ignore addition: the multiplicative group \mathbb{Z}_{n}^{\times}is the set $(\mathbb{Z} / n \mathbb{Z})^{\times}$of invertible elements in $\mathbb{Z} / n \mathbb{Z}$ under its multiplication. It is some finite abelian group with $\phi(n)$ elements.

Overarching theme

Questions about the family $\left\{\mathbb{Z}_{n}^{\times}\right\}_{n=1}^{\infty}$ of multiplicative groups are usually analytic number theory opportunities in disguise.

The Euler phi-function

Definition

The Euler totient function $\phi(n)$ is the number of integers in $\{1, \ldots, n\}$ that are relatively prime to n.

Statistics we care about

- The maximal order of $\phi(n)$ is $n-1$
- The minimal order of $\phi(n)$ is $\left(e^{-\gamma}+o(1)\right) \frac{n}{\log \log n}$
- The average order of $\phi(n)$ is $\frac{6}{\pi^{2}} n$, meaning that

$$
\sum_{n \leq x} \phi(n)=\left(\frac{3}{\pi^{2}}+o(1)\right) x^{2}=\sum_{n \leq x} \frac{6}{\pi^{2}} n
$$

What is the distribution of $\phi(n)$?

Since $\phi(n) \rightarrow \infty$, it doesn't have a limiting distribution as is. But if we normalize $\phi(n)$ by dividing it by n, we can obtain a limiting distribution.

The result

The graph shows the cumulative distribution function $F(t)$ for $\phi(n) / n$.

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\phi(n)}{n} \leq t\right\}=F(t)
$$

An unusual function

$F(t)$ is continuous everywhere, but it is a singular function-its derivative equals 0 almost everywhere.

The structure of the multiplicative group

Other questions depend on the structure of \mathbb{Z}_{n}^{\times}, not just its size.

Square roots of unity

The number of solutions to $x^{2} \equiv 1(\bmod n)$ is $2^{\omega(n)}$ when n is odd.

- Here $\omega(n)$ is the number of distinct prime factors of n.

Theorem (Finch \& M. \& Sebah, 2010)

The average order of the number of solutions to $x^{k} \equiv 1(\bmod n)$ is $\frac{1}{x} \sum_{n \leq x} \#\left\{x^{k} \equiv 1(\bmod n)\right\} \sim C_{k}(\log x)^{\tau(k)-1}$, where $\tau(k)$ is the number of positive divisors of k (and C_{k} is an explicit constant).

- Note: this is also the average order of the number of Dirichlet characters $(\bmod n)$ of order k

One canonical form: primary decomposition

Theorem

Every finite abelian group has a unique primary factor decomposition (or elementary divisor decomposition) as the direct sum of cyclic groups of prime-power order.

Example: $n=11$!

$$
\mathbb{Z}_{11!}^{\times} \cong \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{3}^{+} \oplus \mathbb{Z}_{4}^{+} \oplus \mathbb{Z}_{5}^{+} \oplus \mathbb{Z}_{5}^{+} \oplus \mathbb{Z}_{27}^{+} \oplus \mathbb{Z}_{64}^{+}
$$

How do we get that?

It turns out to be straightforward to determine the primary decomposition of \mathbb{Z}_{n}^{\times}, using the Chinese remainder theorem and the fact that odd prime powers always have primitive roots.

- even prime powers are understood, but irritating

Primary decomposition example

Example: $n=11!=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 11$

By the Chinese remainder theorem,

$$
\mathbb{Z}_{11!}^{\times} \cong \mathbb{Z}_{2^{8}}^{\times} \times \mathbb{Z}_{3^{4}}^{\times} \times \mathbb{Z}_{5^{2}}^{\times} \times \mathbb{Z}_{7}^{\times} \times \mathbb{Z}_{11}^{\times} .
$$

For each odd prime power, $\mathbb{Z}_{p^{r}}^{\times}$is cyclic of order $\phi\left(p^{r}\right)$:

$$
\mathbb{Z}_{11!}^{\times} \cong\left(\mathbb{Z}_{64}^{+} \oplus \mathbb{Z}_{2}^{+}\right) \oplus \mathbb{Z}_{54}^{+} \oplus \mathbb{Z}_{20}^{+} \oplus \mathbb{Z}_{6}^{+} \oplus \mathbb{Z}_{10}^{+} .
$$

Again we use the Chinese remainder theorem on each factor:

$$
\mathbb{Z}_{11!}^{\times} \cong\left(\mathbb{Z}_{64}^{+} \oplus \mathbb{Z}_{2}^{+}\right) \oplus\left(\mathbb{Z}_{27}^{+} \oplus \mathbb{Z}_{2}^{+}\right) \oplus\left(\mathbb{Z}_{5}^{+} \oplus \mathbb{Z}_{4}^{+}\right) \oplus\left(\mathbb{Z}_{3}^{+} \oplus \mathbb{Z}_{2}^{+}\right) \oplus\left(\mathbb{Z}_{5}^{+} \oplus \mathbb{Z}_{2}^{+}\right) .
$$

Another canonical form: invariant factor decomposition

Theorem

Every finite abelian group has a unique invariant factor decomposition as the direct sum of cyclic groups $\mathbb{Z}_{d_{1}}^{+}, \ldots, \mathbb{Z}_{d_{k}}^{+}$ where $d_{1}\left|d_{2}\right| \cdots \mid d_{k}$.

Example: $n=11$!

$$
\begin{aligned}
\mathbb{Z}_{11!}^{\times} & \cong \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+}
\end{aligned} \begin{array}{|lllll}
& & \mathbb{Z}_{4}^{+} & \oplus & \mathbb{Z}_{64}^{+} \\
& \oplus & \mathbb{Z}_{3}^{+} & \oplus & \mathbb{Z}_{27}^{+} \\
& & \oplus & \mathbb{Z}_{5}^{+} & \oplus
\end{array} \mathbb{Z}_{5}^{+}+\mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{2}^{+} \oplus \mathbb{Z}_{12}^{+} \oplus \mathbb{Z}_{60}^{+} \oplus \mathbb{Z}_{8640}^{+}
$$

The Carmichael lambda-function

Invariant factor decomposition

$$
\mathbb{Z}_{n}^{\times} \cong \mathbb{Z}_{d_{1}}^{+} \oplus \mathbb{Z}_{d_{2}}^{+} \oplus \cdots \oplus \mathbb{Z}_{d_{k}}^{+} \text {where } d_{1}\left|d_{2}\right| \cdots \mid d_{k}
$$

The largest invariant factor

d_{k} equals the Carmichael function value $\lambda(n)$, which is the largest order of any element of \mathbb{Z}_{n}^{\times}(the "exponent" of \mathbb{Z}_{n}^{\times}).

Theorem (Erdős \& Pomerance, 1991)

For almost all integers n, we have $\lambda(n)=n /(\log n)^{\log \log \log n+O(1)}$.

- much smaller than $\phi(n) \gg n / \log \log n$

Theorem (M. \& Pomerance, 2005)

$\lambda(\lambda(n))=n /(\log n)^{(1+o(1))(\log \log \log n)^{2}}$ for almost all integers n.

The number of prime factors

Length of the invariant factor decomposition

If $\mathbb{Z}_{n}^{\times} \cong \mathbb{Z}_{d_{1}}^{+} \oplus \cdots \oplus \mathbb{Z}_{d_{k}}^{+}$where $d_{1}\left|d_{2}\right| \cdots \mid d_{k}$, then $k=\omega(n)$ (the number of distinct prime factors of n) when n is odd.

The size of $\omega(n)$

- maximal order: $(1+o(1)) \frac{\log n}{\log \log n}$
- average order: $\frac{1}{x} \sum_{n \leq x} \omega(n) \sim \log \log x$.

Its sibling

$\Omega(n)$: the number of prime factors of n counted with multiplicity.

- same average order as $\omega(n)$; maximal order $\frac{\log n}{\log 2}$

The number of prime factors

The Hardy-Ramanujan theorem (1917)

The normal order of $\omega(n)$ is $\log \log n$: for every $\varepsilon>0$, the set $\{n \in \mathbb{N}:(1-\varepsilon) \log \log n<\omega(n)<(1+\varepsilon) \log \log n\}$ has density 1 .

- $\omega(n) \sim \log \log n$ for almost all integers n

The Erdős-Kac theorem (1940)

$\omega(n)$ acts like a normal random variable with mean $\log \log n$ and variance $\log \log n$: the cumulative distribution function of $(\omega(n)-\log \log n) / \sqrt{\log \log n}$ is

$$
\lim _{x \rightarrow \infty} \frac{1}{x} \#\left\{n \leq x: \frac{\omega(n)-\log \log n}{(\log \log n)^{1 / 2}}<t\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-u^{2} / 2} d u
$$

- Both statements remain true with $\Omega(n)$ in place of $\omega(n)$

How many terms in the primary decomposition?

Exercise

If the finite abelian group G has m elements, then the number of terms in the primary decomposition of G is at least $\omega(m)$ and at most $\Omega(m)$. In particular, the length of the primary decomposition of \mathbb{Z}_{n}^{\times}is between $\omega(\phi(n))$ and $\Omega(\phi(n))$.

Theorem (Erdós \& Pomerance, 1985)

$\omega(\phi(n))$ and $\Omega(\phi(n))$ each acts like a normal random variable with mean $\frac{1}{2}(\log \log n)^{2}$ and variance $\frac{1}{3}(\log \log n)^{3}$:

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\omega(\phi(n))-\frac{1}{2}(\log \log n)^{2}}{\sqrt{\frac{1}{3}(\log \log n)^{3}}}<t\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-u^{2} / 2} d u
$$

Therefore the same is true of the length of the primary decomposition of \mathbb{Z}_{n}^{\times}.

The largest primary factor: a bit mysterious

What we do know

If $P(n)$ denotes the largest prime factor of n, then $\frac{\log n}{\log P(n)}$ has a cumulative distribution function $1-\rho(u)$, where ρ is the Dickman-de Bruijn function.

$$
\rho^{\prime}(u)=-\frac{\rho(u-1)}{u} \quad(u>1)
$$

What we expect

We should get the same distribution on shifted primes: $\frac{\log (p-1)}{\log P(p-1)}$.
But we don't even know that there are infinitely many p for which this is >3.52. (Lichtman, 2022 preprint)

Largest primary factor of $\mathbb{Z}_{n}^{\times} \approx$ largest prime factor of $P(n)-1$.

- Precise conjecture can be made (essentially by
Lamzouri, 2007)

The smallest invariant factor: statements

Most \mathbb{Z}_{n}^{\times}have 2 as an invariant factor. In fact:

Theorem (Chang \& M., 2020)

The number of integers $n \leq x$ for which the least invariant factor of \mathbb{Z}_{n}^{\times}does not equal 2 is $C \frac{x}{\sqrt{\log x}}+O\left(\frac{x}{(\log x)^{3 / 4-\varepsilon}}\right)$, where $C \approx 1.01782$ is given by

$$
C=\frac{3}{2^{5 / 2}} \prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2}+\frac{7}{2^{5 / 2} 3^{3 / 4}} \prod_{p \equiv 5(\bmod 6)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2} .
$$

Further theorem

For any even $m \geq 4$, the number of integers $n \leq x$ for which the least invariant factor of \mathbb{Z}_{n}^{\times}equals m is $\sim C_{m} \frac{x}{(\log x)^{1-1 / \phi(m)}}$ for some explicit constant C_{m}.

The smallest invariant factor: proof method

Application of the Selberg-Delange method

The Selberg-Delange method can be used to count integers whose prime factors all come from some set \mathcal{S} of primes.

- The Dirichlet series $F_{\mathcal{S}}(s)=\sum_{n \in \mathbb{N}} n^{-s}=\prod_{p \in \mathcal{S}}\left(1-p^{-s}\right)^{-1}$

$$
p \mid n \Longrightarrow p \in \mathcal{S}
$$

acts like a "fractional power of $\zeta(s)$ ": if \mathcal{S} has density δ, then $F_{\mathcal{S}}(s) \zeta(s)^{-\delta}$ is analytic near $s=1$.

- Result: $\#\{n \leq x: p \mid n \Longrightarrow p \in \mathcal{S}\} \sim C_{\mathcal{S}} x /(\log x)^{1-\delta}$

Lemma

Fix an even number $m \geq 4$. The least invariant factor of \mathbb{Z}_{n}^{\times}is a multiple of m if and only if all of the following conditions hold:
(1) for primes $p \nmid m$: if $p \mid n$ then we must have $p \equiv 1(\bmod m)$;
(2) $4 \nmid n$; and (some condition for odd primes $p \mid m$)

The smallest primary factor: statements

Most \mathbb{Z}_{n}^{\times}have 2 as a primary factor. In fact:

Theorem (M. \& Nguyen, in progress)

The number of integers $n \leq x$ for which the least primary factor of \mathbb{Z}_{n}^{\times}does not equal 2 is $D \frac{x}{\sqrt{\log x}}+O\left(\frac{x}{(\log x)^{2 / 3}}\right)$, where

$$
D \approx 0.490694 \text { is given by } D=\frac{3}{2^{5 / 2}} \prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p^{2}}\right)^{1 / 2} .
$$

Further theorem

For any prime power $q \geq 3$, the number of integers $n \leq x$ for which the least primary factor of \mathbb{Z}_{n}^{\times}equals q is $\sim D_{q} \frac{x}{(\log x)^{\beta_{q}}}$ for some explicit constants D_{q} and β_{q}.

- uses the Selberg-Delange formulation in Chang \& M.

Universal profile of invariant factors (M. \& Simpson)

Almost all \mathbb{Z}_{n}^{\times}have among their invariant factors:

- $\sim \frac{1}{2} \log \log n$ copies of \mathbb{Z}_{2}^{+},
- $\sim \frac{1}{4} \log \log n$ copies of \mathbb{Z}_{12}^{+},
- $\sim \frac{1}{12} \log \log n$ copies of \mathbb{Z}_{120}^{+},
- ~ $\frac{1}{24} \log \log n$ copies of \mathbb{Z}_{2520}^{+},
- $\sim \frac{1}{40} \log \log n$ copies of \mathbb{Z}_{5040}^{+},
- $\sim \frac{1}{60} \log \log n$ copies of $\mathbb{Z}_{55440}^{+}, \ldots$

These have (interesting) distributions as well

For example, the number of copies of \mathbb{Z}_{2}^{+}has mean and variance $\frac{1}{2} \log \log n \ldots$ but the normalized number of copies doesn't tend to a normal random variable, but rather the minimum of two normal random variables!

Prohibiting a subgroup

Problem

Let q be an odd prime. How many multiplicative groups \mathbb{Z}_{n}^{\times} have no subgroup isomorphic to \mathbb{Z}_{q}^{+}?

Translation to number theory

\mathbb{Z}_{n}^{\times}has no subgroup isomorphic to \mathbb{Z}_{q}^{+}if and only if both $p \mid n \Longrightarrow p \not \equiv 1(\bmod q)$ and $q^{2} \nmid n$.

Counting such integers is a classic application of the Selberg-Delange method; their counting function will be asymptotically $E_{q} x /(\log x)^{1 / \phi(q)}$ for some constant E_{q}.

Prescribing a subgroup

Definition (q is an odd prime throughout)

The q-Sylow subgroup of a finite abelian group G is the largest subgroup of G whose cardinality is a power of q.

- " G has no subgroup isomorphic to \mathbb{Z}_{q}^{+}" is the same as "the q-Sylow subgroup of G is trivial"

So the classical question of counting integers without prime factors congruent to $1(\bmod q)$ can be generalized to counting integers with a specific q-Sylow subgroup. (idea: Colin Weir)

Theorem (Downey \& M., 2019)

If $G=\mathbb{Z}_{q^{\alpha_{1}}}^{+} \oplus \cdots \oplus \mathbb{Z}_{q^{\alpha_{k}}}^{+}$, then the number of integers $n \leq x$ such that the q-Sylow subgroup of \mathbb{Z}_{n}^{\times}equals G is asymptotically $E_{G} \frac{x(\log \log x)^{k}}{(\log x)^{1 /(q-1)}}$ for some explicit constant E_{G}.

How many subgroups? (I)

Definition

Let $I(n)$ denote the number of subgroups of \mathbb{Z}_{n}^{\times}up to isomorphism.
M. \& Troupe (2020) showed that $\frac{\log I(n)}{\log 2}$ is between $\omega(\phi(n))$ and $\Omega(\phi(n))$. An immediate consequence:

Theorem (Erdós \& Pomerance, 1985)

$\omega(\phi(n))$ and $\Omega(\phi(n))$ each acts like a normal random variable with mean $\frac{1}{2}(\log \log n)^{2}$ and variance $\frac{1}{3}(\log \log n)^{3}$:

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\omega(\phi(n))-\frac{1}{2}(\log \log n)^{2}}{\sqrt{\frac{1}{3}(\log \log n)^{3}}}<t\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-u^{2} / 2} d u
$$

Therefore the same is true of $\frac{\log I(n)}{\log 2}$.

How many subgroups? (II)

Definition

Let $G(n)$ denote the number of subgroups of \mathbb{Z}_{n}^{\times}, counting each subgroup separately even if some are isomorphic to others.

Theorem (M. \& Troupe, 2020)

$\log G(n)$ acts like a normal random variable with mean $A(\log \log n)^{2}$ and variance $B(\log \log n)^{3}$, for certain $A, B>0$:

$$
\frac{1}{x} \#\left\{n \leq x: \frac{\log G(n)-A(\log \log n)^{2}}{\sqrt{B(\log \log n)^{3}}}<t\right\} \rightarrow \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-u^{2} / 2} d u .
$$

Maximal order

There are infinitely many n for which $\log G(n)>\frac{1}{17} \frac{(\log n)^{2}}{\log \log n}$.

- In particular, $G(n) \gg n^{2023!}$ infinitely often!

Your favourite group

A nice exercise

Show that any given finite abelian group G is a subgroup of \mathbb{Z}_{n}^{\times} for infinitely many positive integers n.

Proof

Write $G \cong \mathbb{Z}_{d_{1}}^{+} \oplus \cdots \oplus \mathbb{Z}_{d_{k}}^{+}$. There are infinitely many primes $p_{j} \equiv 1\left(\bmod d_{j}\right)$, and for each such prime, $\mathbb{Z}_{d_{j}}^{+}$is a subgroup of $\mathbb{Z}_{p_{j}}^{\times} \cong \mathbb{Z}_{p_{j}-1}^{+}$. Then G is a subgroup of $\mathbb{Z}_{p_{1} \cdots p_{k}}^{\times} \cong \mathbb{Z}_{p_{1}}^{\times} \times \cdots \times \mathbb{Z}_{p_{k}}^{\times}$.

Project for a future collaboration

But more is true: G should be a subgroup of \mathbb{Z}_{n}^{\times}for almost all integers n ! An asymptotic formula for the exceptions should follow from the techniques in my paper with Downey.

