Dependence of $\delta_{q;a,b}$ on a and b 000000

Prime number races: An asymptotic formula for the densities

Greg Martin University of British Columbia

CMS Winter Meeting Windsor, Ontario December 6, 2009

Prime number races: An asymptotic formula for the densities

Greg Martin

Outline

Dependence of $\delta_{q;a,b}$ on a and b 000000

2 Dependence of $\delta_{a;a,b}$ on q

3 Dependence of $\delta_{q;a,b}$ on a and b

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

A little too abstract

Abstract

Given two reduced residue classes *a* and *b* (mod *q*), let $\delta_{q;a,b}$ be the "probability", when *x* is "chosen randomly", that more primes up to *x* are congruent to *a* (mod *q*) than are congruent to *b* (mod *q*).... In joint work with Daniel Fiorilli of Univ. Montréal (thanks to whom this eternal manuscript-in-preparation has finally seen the light of day), we give an asymptotic series for $\delta_{q;a,b}$ that can be used to calculate it to arbitrary precision....

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

A little too abstract

Abstract

Given two reduced residue classes *a* and *b* (mod *q*), let $\delta_{q;a,b}$ be the "probability", when *x* is "chosen randomly", that more primes up to *x* are congruent to *a* (mod *q*) than are congruent to *b* (mod *q*).... In joint work with Daniel Fiorilli of Univ. Montréal (thanks to whom this eternal manuscript-in-preparation has finally seen the light of day), we give an asymptotic series for $\delta_{q;a,b}$ that can be used to calculate it to arbitrary precision....

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

A little too abstract

Abstract

Given two reduced residue classes *a* and *b* (mod *q*), let $\delta_{q;a,b}$ be the "probability", when *x* is "chosen randomly", that more primes up to *x* are congruent to *a* (mod *q*) than are congruent to *b* (mod *q*).... In joint work with Daniel Fiorilli of Univ. Montréal (thanks to whom this eternal manuscript-in-preparation has finally seen the light of day), we give an asymptotic series for $\delta_{q;a,b}$ that can be used to calculate it to arbitrary precision....

I remember putting that phrase in the abstract to make myself finish our manuscript so that we could submit it. Setting up a race between the manuscript and this conference would be my motivation!

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

A little too abstract

Abstract

Given two reduced residue classes *a* and *b* (mod *q*), let $\delta_{q;a,b}$ be the "probability", when *x* is "chosen randomly", that more primes up to *x* are congruent to *a* (mod *q*) than are congruent to *b* (mod *q*).... In joint work with Daniel Fiorilli of Univ. Montréal (thanks to whom this eternal manuscript-in-preparation has finally seen the light of day), we give an asymptotic series for $\delta_{q;a,b}$ that can be used to calculate it to arbitrary precision....

I remember putting that phrase in the abstract to make myself finish our manuscript so that we could submit it. Setting up a race between the manuscript and this conference would be my motivation!

I lost the race.

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

A little too abstract

Abstract

Given two reduced residue classes *a* and *b* (mod *q*), let $\delta_{q;a,b}$ be the "probability", when *x* is "chosen randomly", that more primes up to *x* are congruent to *a* (mod *q*) than are congruent to *b* (mod *q*).... In joint work with Daniel Fiorilli of Univ. Montréal (thanks to whom this eternal manuscript-in-preparation has finally seen the light of day), we give an asymptotic series for $\delta_{q;a,b}$ that can be used to calculate it to arbitrary precision....

I remember putting that phrase in the abstract to make myself finish our manuscript so that we could submit it. Setting up a race between the manuscript and this conference would be my motivation!

I lost the race.

Again.

Dependence of $\delta_{q;a,b}$ on a and b 000000

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:

"There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second."

Since then, "notable differences" have been observed among primes of various forms qn + a. Recall the notation

$$\pi(x;q,a) = \#\{ \text{primes } p \le x \colon p \equiv a \pmod{q} \}.$$

The general pattern

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:

"There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second."

Since then, "notable differences" have been observed among primes of various forms qn + a. Recall the notation

$$\pi(x;q,a) = \#\{ \text{primes } p \le x \colon p \equiv a \pmod{q} \}.$$

The general pattern

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:

"There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second."

Since then, "notable differences" have been observed among primes of various forms qn + a. Recall the notation

$$\pi(x;q,a) = \#\{\text{primes } p \le x \colon p \equiv a \pmod{q}\}.$$

The general pattern

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:

"There is a notable difference in the splitting of the prime numbers between the two forms 4n + 3, 4n + 1: the first form contains a lot more than the second."

Since then, "notable differences" have been observed among primes of various forms qn + a. Recall the notation

$$\pi(x;q,a) = \#\{ \text{primes } p \le x \colon p \equiv a \pmod{q} \}.$$

The general pattern

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Defining delta

The central question

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicity, $\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,b) > \pi(x;q,b)}} \frac{dx}{x} \right).$

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Defining delta

The central question

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right)$$

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Defining delta

The central question

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Defining delta

The central question

How often is $\pi(x;q,a)$ ahead of $\pi(x;q,b)$?

Definition

Define $\delta_{q;a,b}$ to be the logarithmic density of the set of real numbers $x \ge 1$ satisfying $\pi(x;q,a) > \pi(x;q,b)$. More explicitly,

$$\delta_{q;a,b} = \lim_{T \to \infty} \left(\frac{1}{\log T} \int_{\substack{1 \le x \le T \\ \pi(x;q,a) > \pi(x;q,b)}} \frac{dx}{x} \right).$$

Dependence of $\delta_{q;a,b}$ on a and b 000000

Two hypotheses

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- Ll is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Dependence of $\delta_{q;a,b}$ on a and b 000000

Two hypotheses

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- LI is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Dependence of $\delta_{q;a,b}$ on a and b 000000

Two hypotheses

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- LI is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Dependence of $\delta_{q;a,b}$ on a and b 000000

Two hypotheses

- The Generalized Riemann Hypothesis (GRH): all nontrivial zeros of Dirichlet *L*-functions have real part equal to $\frac{1}{2}$
- A linear independence hypothesis (LI): the nonnegative imaginary parts of these nontrivial zeros are linearly independent over the rationals
- Work of Ford and Konyagin shows that certain hypothetical violations of GRH do actually lead to pathological behavior in prime number races.
- LI is somewhat analogous to a "nonsingularity" hypothesis: with precise information about any linear dependences that might exist, we could probably still work out the answer....

Dependence of $\delta_{q;a,b}$ on a and b 000000

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

- $\delta_{q;a,b}$ always exists and is strictly between 0 and 1
- $\delta_{q;a,b} + \delta_{q;b,a} = 1$
- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Dependence of $\delta_{q;a,b}$ on a and b 000000

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

• $\delta_{q;a,b}$ always exists and is strictly between 0 and 1

•
$$\delta_{q;a,b} + \delta_{q;b,a} = 1$$

- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Dependence of $\delta_{q;a,b}$ on a and b 000000

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

• $\delta_{q;a,b}$ always exists and is strictly between 0 and 1

•
$$\delta_{q;a,b} + \delta_{q;b,a} = 1$$

- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂

• $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Dependence of $\delta_{q;a,b}$ on a and b 000000

Rubinstein and Sarnak's results

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Under these two hypotheses GRH and LI, Rubinstein and Sarnak proved (1994):

• $\delta_{q;a,b}$ always exists and is strictly between 0 and 1

•
$$\delta_{q;a,b} + \delta_{q;b,a} = 1$$

- "Chebyshev's bias": δ_{q;a,b} > ¹/₂ if and only if a is a nonsquare (mod q) and b is a square (mod q)
- if *a* and *b* are distinct squares (mod *q*) or distinct nonsquares (mod *q*), then δ_{q;a,b} = δ_{q;b,a} = ¹/₂
- $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, uniformly for all pairs a, b of distinct reduced residues (mod q).

Dependence of $\delta_{q;a,b}$ on a and b 000000

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over nonsquares and squares (mod *q*).

Dependence of $\delta_{q;a,b}$ on a and b 000000

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over nonsquares and squares (mod *q*).

Dependence of $\delta_{q;a,b}$ on a and b000000

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a,b*} vary significantly as *a* and *b* vary over nonsquares and squares (mod *q*).

Dependence of $\delta_{q;a,b}$ on a and b000000

Comparisons of the densities $\delta_{q;a,b}$

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Feuerverger and M. (2000) generalized Rubinstein and Sarnak's approach in several directions.

- The calculations required numerical evaluation of complicated integrals, which involved many explicitly computed zeros of Dirichlet *L*-functions.
- One significant discovery is that even with *q* fixed, the values of δ_{*q*;*a*,*b*} vary significantly as *a* and *b* vary over nonsquares and squares (mod *q*).

Dependence of $\delta_{q;a,b}$ on q $\bullet \circ \circ$ Dependence of $\delta_{q;a,b}$ on a and b 000000

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Current goals

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Dependence of $\delta_{q;a,b}$ on q•00 Dependence of $\delta_{q;a,b}$ on a and b

Current goals

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Dependence of $\delta_{q;a,b}$ on q•00 Dependence of $\delta_{q;a,b}$ on a and b

Current goals

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Dependence of $\delta_{q;a,b}$ on q•00 Dependence of $\delta_{q;a,b}$ on a and b 000000

Current goals

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

Dependence of $\delta_{q;a,b}$ on q•00 Dependence of $\delta_{q;a,b}$ on a and b 000000

Current goals

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Current goals

- A more precise understanding of the sizes of $\delta_{q;a,b}$. Recalling that $\delta_{q;a,b}$ tends to $\frac{1}{2}$ as q tends to infinity, for example, we would like an asymptotic formula for $\delta_{q;a,b} - \frac{1}{2}$.
- A way to decide which $\delta_{q;a,b}$ are likely to be larger than others as *a* and *b* vary (with *q* fixed), based on elementary criteria rather than laborious numerical calculation.

These goals are the subject of *Inequities in the Shanks-Rényi* prime number race: an asymptotic formula for the densities, which I will finish this month if it (or Daniel) kills me.

Dependence of $\delta_{q;a,b}$ on q ${\circ}{\bullet}{\circ}$

Dependence of $\delta_{q;a,b}$ on a and b 000000

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{2\sqrt{\pi\phi(q)\log q}} + O\left(\frac{\rho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}\right)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 } (\text{mod } q)$ $= 2^{\#\text{number of odd prime factors of } q} \times \{1, 2, \text{ or } 4\}$

Prime number races: An asymptotic formula for the densities

Dependence of $\delta_{q;a,b}$ on q ${\circ}{\bullet}{\circ}$

Dependence of $\delta_{q;a,b}$ on a and b 000000

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{2\sqrt{\pi\phi(q)\log q}} + Oigg(rac{
ho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}igg).$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1 (mod q)}$ $= 2^{\#\text{number of odd prime factors of } q} \times \{1, 2, \text{ or } 4\}$

Dependence of $\delta_{q;a,b}$ on q ${\circ}{\bullet}{\circ}$

Dependence of $\delta_{q;a,b}$ on a and b 000000

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{2\sqrt{\pi\phi(q)\log q}} + Oigg(rac{
ho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}igg).$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon}(q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) = \text{the number of square roots of 1} \pmod{q}$ $= 2^{\#\text{number of odd prime factors of } q} \times \{1, 2, \text{ or } 4\}$

Prime number races: An asymptotic formula for the densities

Dependence of $\delta_{q;a,b}$ on q ${\circ}{\bullet}{\circ}$

Dependence of $\delta_{q;a,b}$ on a and b 000000

Asymptotic formula, version I

 $\delta_{q;a,b}$: the "probability" that $\pi(x;q,a)>\pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{2\sqrt{\pi\phi(q)\log q}} + Oigg(rac{
ho(q)\log\log q}{\phi(q)^{1/2}(\log q)^{3/2}}igg)$$

In particular, $\delta_{q;a,b} = \frac{1}{2} + O_{\varepsilon} (q^{-1/2+\varepsilon})$ for any $\varepsilon > 0$.

 $\rho(q) =
 the number of square roots of 1 (mod q)
 = 2^{#number of odd prime factors of q} × {1, 2, or 4}$

Prime number races: An asymptotic formula for the densities

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Graph of the densities

Figure: All densities $\delta_{q;a,b}$ with $q \leq 1000$

Dependence of $\delta_{q;a,b}$ on a and b

Asymptotic formula, version II

$$\delta_{q;a,b}$$
 : the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\bigl(q^{-3/2+\varepsilon}\bigr),$$

where V(q; a, b) is the variance of a particular distribution, and

$$V(q; a, b) = 2 \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \ .$$

Dependence of $\delta_{q;a,b}$ on a and b

Asymptotic formula, version II

$$\delta_{q;a,b}$$
 : the "probability" that $\pi(x;q,a) > \pi(x;q,b)$

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{\sqrt{2\pi V(q;a,b)}} + Oig(q^{-3/2+arepsilon}ig),$$

where V(q; a, b) is the variance of a particular distribution, and

$$V(q; a, b) = 2 \sum_{\substack{\chi \pmod{q} \ \chi
eq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \ L(rac{1}{2} + i\gamma, \chi) = 0}} rac{1}{rac{1}{4} + \gamma^2} \; .$$

Prime number races: An asymptotic formula for the densities

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b

Asymptotic formula, version III

In fact, the asymptotic formula

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\left(q^{-3/2+\varepsilon}\right)$$

is the case L = 0 of the following asymptotic series:

Theorem (Fiorilli and M., 2009+)

Assume GRH and Ll. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} \sum_{\ell=0}^{L} \frac{P_{\ell}(\rho(q)^2)}{V(q;a,b)^{\ell}} + O(q^{-L-3/2+\varepsilon}),$$

where P_{ℓ} is a polynomial of degree ℓ whose coefficients, while depending on q, a, b, are bounded by a function of ℓ .

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b

Asymptotic formula, version III

In fact, the asymptotic formula

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\left(q^{-3/2+\varepsilon}\right)$$

is the case L = 0 of the following asymptotic series:

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} \sum_{\ell=0}^{L} \frac{P_{\ell}(\rho(q)^2)}{V(q;a,b)^{\ell}} + O(q^{-L-3/2+\varepsilon}),$$

where P_{ℓ} is a polynomial of degree ℓ whose coefficients, while depending on q, a, b, are bounded by a function of ℓ .

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b

Asymptotic formula, version III

In fact, the asymptotic formula

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} + O\left(q^{-3/2+\varepsilon}\right)$$

is the case L = 0 of the following asymptotic series:

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod q) and b is a square (mod q), then

$$\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q;a,b)}} \sum_{\ell=0}^{L} \frac{P_{\ell}(\rho(q)^2)}{V(q;a,b)^{\ell}} + O(q^{-L-3/2+\varepsilon}),$$

where P_{ℓ} is a polynomial of degree ℓ whose coefficients, while depending on q, a, b, are bounded by a function of ℓ .

Dependence of $\delta_{q;a,b}$ on a and b 00000

Three terms depending on *a* and *b*

The variance, evaluated $V(q; a, b) = 2 \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2}$ $= 2\phi(q) \left(\log q - \sum \frac{\log p}{2} - (\gamma_0 + \log 2\pi) + R_q(a - b)\right)$

$$+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b).$$

There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O(q^{-3/2+\varepsilon}) \text{ to decrease.}$

Dependence of $\delta_{q;a,b}$ on a and b

Three terms depending on *a* and *b*

The variance, evaluated

$$\begin{split} V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O(q^{-3/2+\varepsilon}) \text{ to decrease.}$

Dependence of $\delta_{q;a,b}$ on a and b

Three terms depending on *a* and *b*

The variance, evaluated

$$\begin{split} V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

There are three terms in this formula for the variance V(q; a, b) that depend on a and b. Whenever any of the three is bigger than normal, the variance increases, causing the density $\delta_{q;a,b} = \frac{1}{2} + \frac{\rho(q)}{\sqrt{2\pi V(q; a, b)}} + O(q^{-3/2+\varepsilon}) \text{ to decrease.}$

Dependence of $\delta_{q;a,b}$ on a and b

Three terms depending on *a* and *b*

The variance, evaluated

$$\begin{split} V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

There are three terms in this formula for the variance V(q; a, b) that depend on *a* and *b*. Whenever any of the three is bigger than normal, the variance increases, causing the density

Dependence of $\delta_{q;a,b}$ on a and b

Three terms depending on *a* and *b*

The variance, evaluated

$$\begin{split} V(q;a,b) &= 2\sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |\chi(b) - \chi(a)|^2 \sum_{\substack{\gamma > 0 \\ L(\frac{1}{2} + i\gamma, \chi) = 0}} \frac{1}{\frac{1}{4} + \gamma^2} \\ &= 2\phi(q) \bigg(\log q - \sum_{p|q} \frac{\log p}{p-1} - (\gamma_0 + \log 2\pi) + R_q(a-b) \bigg) \\ &+ (2\log 2)\iota_q(-ab^{-1})\phi(q) + 2M(q;a,b). \end{split}$$

There are three terms in this formula for the variance V(q; a, b) that depend on *a* and *b*. Whenever any of the three is bigger than normal, the variance increases, causing the density

$$\delta_{q;a,b} = rac{1}{2} + rac{
ho(q)}{\sqrt{2\pi V(q;a,b)}} + Oig(q^{-3/2+arepsilon}ig)$$
 to decrease.

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Terms depending on *a* and *b*

$$V(q; a, 1) = 2q (\log q - (\gamma_0 + \log 2\pi) + (2\log 2)\iota_q(a)) + 2M(q; a, 1) + O(\log q).$$

•
$$\iota_q(a) = \begin{cases} 1, & \text{if } a \equiv -1 \pmod{q}, \\ 0, & \text{if } a \not\equiv -1 \pmod{q} \end{cases}$$

•
$$M(q; a, 1) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |1 - \chi(a)|^2 \frac{L'(1, \chi)}{L(1, \chi)}$$
. Moreover, if $1 \le a, \tilde{a} \le q$ are such that $\tilde{a} \equiv a^{-1} \pmod{q}$, then

$$M(q; a, 1) = q\left(\frac{\Lambda(a)}{a} + \frac{\Lambda(\tilde{a})}{\tilde{a}}\right) + O(\log q).$$

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Terms depending on *a* and *b*

$$V(q; a, 1) = 2q (\log q - (\gamma_0 + \log 2\pi) + (2\log 2)\iota_q(a)) + 2M(q; a, 1) + O(\log q).$$

•
$$\iota_q(a) = \begin{cases} 1, & \text{if } a \equiv -1 \pmod{q}, \\ 0, & \text{if } a \not\equiv -1 \pmod{q} \end{cases}$$

•
$$M(q; a, 1) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |1 - \chi(a)|^2 \frac{L'(1, \chi)}{L(1, \chi)}$$
. Moreover, i
 $1 \le a, \tilde{a} < q$ are such that $\tilde{a} \equiv a^{-1} \pmod{q}$, then

$$M(q; a, 1) = q\left(\frac{\Lambda(a)}{a} + \frac{\Lambda(\tilde{a})}{\tilde{a}}\right) + O(\log q).$$

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Terms depending on *a* and *b*

$$V(q; a, 1) = 2q (\log q - (\gamma_0 + \log 2\pi) + (2\log 2)\iota_q(a)) + 2M(q; a, 1) + O(\log q).$$

•
$$\iota_q(a) = \begin{cases} 1, & \text{if } a \equiv -1 \pmod{q}, \\ 0, & \text{if } a \not\equiv -1 \pmod{q} \end{cases}$$

• $M(q; a, 1) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |1 - \chi(a)|^2 \frac{L'(1, \chi)}{L(1, \chi)}.$ Moreover, if $1 \le a, \tilde{a} < q$ are such that $\tilde{a} \equiv a^{-1} \pmod{q}$, then $M(q; a, 1) = q\left(\frac{\Lambda(a)}{a} + \frac{\Lambda(\tilde{a})}{\tilde{a}}\right) + O(\log q).$

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Terms depending on *a* and *b*

$$V(q; a, 1) = 2q (\log q - (\gamma_0 + \log 2\pi) + (2\log 2)\iota_q(a)) + 2M(q; a, 1) + O(\log q).$$

•
$$\iota_q(a) = \begin{cases} 1, & \text{if } a \equiv -1 \pmod{q}, \\ 0, & \text{if } a \not\equiv -1 \pmod{q} \end{cases}$$

• $M(q; a, 1) = \sum_{\substack{\chi \pmod{q} \\ \chi \neq \chi_0}} |1 - \chi(a)|^2 \frac{L'(1, \chi)}{L(1, \chi)}.$ Moreover, if $1 \le a, \tilde{a} < q$ are such that $\tilde{a} \equiv a^{-1} \pmod{q}$, then $M(q; a, 1) = q\left(\frac{\Lambda(a)}{a} + \frac{\Lambda(\tilde{a})}{\tilde{a}}\right) + O(\log q).$

Dependence of $\delta_{q;a,b}$ on q 000

Dependence of $\delta_{q;a,b}$ on a and b 000000

Graph of normalized densities

Figure: Densities $\delta_{q;a,1}$ for primes q, after a normalization to display them at the same scale

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

Graph of normalized densities

Figure: Densities $\delta_{q;a,1}$ for primes q, after a normalization to display them at the same scale

Prime number races: An asymptotic formula for the densities

Top Ten List

TOP TO MOST OFFICIENT TACES					
Modulus q	Winner a	Loser b	Proportion $\delta_{q;a,b}$		
24		1	99.9987%		
24		1	99.9982%		
12		1	99.9976%		
24		1	99.9888%		
24		1	99.9833%		
24		1	99.9718%		
		1	99.9568%		
12		1	99.9206%		
24		1	99.9124%		
3		1	99.9064%		

Top Ten List

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b $\circ\circ\circ\circ\circ\bullet$

Top 10 Most Unfair Races

Modulus q	Winner a	Loser b	Proportion $\delta_{q;a,b}$
24	5	1	99.9987%
24	11	1	99.9982%
12	11	1	99.9976%
24	23	1	99.9888%
24	7	1	99.9833%
24	19	1	99.9718%
8	3	1	99.9568%
12	5	1	99.9206%
24	17	1	99.9124%
3	2	1	99.9064%

The end

Dependence of $\delta_{q;a,b}$ on q000 Dependence of $\delta_{q;a,b}$ on a and b 000000

The survey article *Prime number races*, with Andrew Granville

www.math.ubc.ca/~gerg/index.shtml?abstract=PNR

My research on prime number races

www.math.ubc.ca/~gerg/

index.shtml?abstract=ISRPNRAFD

These slides

www.math.ubc.ca/~gerg/index.shtml?slides

Prime number races: An asymptotic formula for the densities

Greg Martin