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Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:
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In 1853, Chebyshev wrote a letter to Fuss saying the following:

“There is a notable difference in the splitting of the prime
numbers between the two forms 4n + 3, 4n + 1: the first form
contains a lot more than the second.”

Since then, “notable differences” have been observed among
primes of various forms gn + a. Recall the notation

m(x;q,a) = #{primes p < x: p =a (mod ¢)}.
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Where all the fuss started

In 1853, Chebyshev wrote a letter to Fuss saying the following:

“There is a notable difference in the splitting of the prime
numbers between the two forms 4n + 3, 4n + 1: the first form
contains a lot more than the second.”

Since then, “notable differences” have been observed among
primes of various forms gn + a. Recall the notation

m(x;q,a) = #{primes p < x: p =a (mod ¢)}.

The general pattern

m(x; q,a) tends to be bigger when a is a nonsquare (mod ¢),
compared to when « is a square (mod g).
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Defining delta

The central question

How often is 7(x; ¢, a) ahead of 7 (x; ¢, b)?
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Defining delta

The central question

How often is 7(x; ¢, a) ahead of 7 (x; ¢, b)?

Definition
Define d,.., to be the logarithmic density of the set of real
numbers x > 1 satisfying 7(x; q,a) > 7(x;q,b).
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Defining delta

The central question
How often is 7(x; ¢, a) ahead of 7 (x; ¢, b)?

Definition
Define 44,4, to be the logarithmic density of the set of real
numbers x > 1 satisfying 7(x; ¢, a) > 7(x; g, b). More explicity,

5 lim 1 / dx
g = 11 — .
g4, T—o0 lOg T X

1<x<T
m(x;q,a) > (x;9,b)
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Defining delta

The central question
How often is 7(x; ¢, a) ahead of 7 (x; ¢, b)?

Definition
Define d,.., to be the logarithmic density of the set of real
numbers x > 1 satisfying 7(x; ¢, a) > 7(x; g, b). More explicity,

5 lim 1 / dx
5 = 1 — .
Gab = 1 oo \ log T x

1<x<T
m(x;q,a) > (x;9,b)

dq:a,5 18 the limiting “probability” that when a “random” real
number x is chosen, there are more primes up to x that are
congruent to a (mod ¢) than congruent to b (mod g).
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Two hypotheses

Rubinstein and Sarnak (1994) investigated these densities §,.4,
under the following:

Two hypotheses

@ The Generalized Riemann Hypothesis (GRH): all nontrivial
zeros of Dirichlet L-functions have real part equal to %
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Rubinstein and Sarnak (1994) investigated these densities §,.4,
under the following:

Two hypotheses

@ The Generalized Riemann Hypothesis (GRH): all nontrivial
zeros of Dirichlet L-functions have real part equal to %
@ A linear independence hypothesis (LI): the nonnegative

imaginary parts of these nontrivial zeros are linearly
independent over the rationals
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Two hypotheses

Rubinstein and Sarnak (1994) investigated these densities §,.4,
under the following:

Two hypotheses
@ The Generalized Riemann Hypothesis (GRH): all nontrivial
zeros of Dirichlet L-functions have real part equal to %

@ A linear independence hypothesis (LI): the nonnegative
imaginary parts of these nontrivial zeros are linearly
independent over the rationals

We will assume these two hypotheses throughout the talk.
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Rubinstein and Sarnak’s results

dq:ab - the “probability” that (x; ¢,a) > m(x; g, b) J

Under these two hypotheses GRH and LI, Rubinstein and

Sarnak proved (1994):
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dq:ab - the “probability” that (x; ¢,a) > m(x; g, b) J

Under these two hypotheses GRH and LI, Rubinstein and

Sarnak proved (1994):
@ 4.4, always exists and is strictly between 0 and 1
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Rubinstein and Sarnak’s results

dq:ab - the “probability” that (x; ¢,a) > m(x; g, b) J

Under these two hypotheses GRH and LI, Rubinstein and

Sarnak proved (1994):

@ 4.4, always exists and is strictly between 0 and 1

@ “Chebyshev’s bias”: ..., > 5 ifand only if a is a
nonsquare (mod ¢g) and b is a square (mod q)

@ if a and b are distinct squares (mod ¢) or distinct

nonsquares (mod ¢), then §g.a = 6450 = %
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Rubinstein and Sarnak’s results

dq:ab - the “probability” that (x; ¢,a) > m(x; g, b) J

Under these two hypotheses GRH and LI, Rubinstein and

Sarnak proved (1994):
@ 4.4, always exists and is strictly between 0 and 1
@ “Chebyshev’s bias”: ..., > 5 ifand only if a is a
nonsquare (mod ¢g) and b is a square (mod q)
@ if a and b are distinct squares (mod ¢) or distinct
nonsquares (mod ¢), then §g.a = 6450 = %
® 6,4, tends to 1 as ¢ tends to infinity, uniformly for all pairs
a, b of distinct reduced residues (mod g).

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Comparisons of the densities d,.,5

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) J

Feuerverger and M. (2000) generalized Rubinstein and

s approach in several directions.
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dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) J

Feuerverger and M. (2000) generalized Rubinstein and

Sarnak’s approach in several directions.

We calculated (assuming, as usual, GRH and LI) many
examples of the densities dg,q 4.
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Comparisons of the densities d,.,5

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) J

Feuerverger and M. (2000) generalized Rubinstein and

Sarnak’s approach in several directions.
We calculated (assuming, as usual, GRH and LI) many
examples of the densities dg,q 4.
@ The calculations required numerical evaluation of
complicated integrals, which involved many explicitly
computed zeros of Dirichlet L-functions.
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Comparisons of the densities d,.,5

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) J

Feuerverger and M. (2000) generalized Rubinstein and

Sarnak’s approach in several directions.

We calculated (assuming, as usual, GRH and LI) many
examples of the densities dg,q 4.
@ The calculations required numerical evaluation of
complicated integrals, which involved many explicitly
computed zeros of Dirichlet L-functions.

@ One significant discovery is that even with g fixed, the
values of .., vary significantly as « and b vary over
nonsquares and squares (mod g).

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Current goals

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) ]

Current goals
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Current goals

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) |

Current goals

@ A more precise understanding of the sizes of d ., 4.
Recalling that d,,,, tends to 1 as g tends to infinity, for
example, we would like an asymptotic formula for 6, — 3.
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Current goals

@ A more precise understanding of the sizes of d .4 4.
Recalling that d,,,, tends to 1 as g tends to infinity, for
example, we would like an asymptotic formula for 6., — 5.
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Current goals

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) |

Current goals

@ A more precise understanding of the sizes of d .4 4.
Recalling that ., tends to 1 as g tends to infinity, for
example, we would like an asymptotic formula for 6., — %

@ A way to decide which 4., are likely to be larger than
others as a and b vary (with ¢ fixed), based on elementary
criteria rather than laborious numerical calculation.
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Current goals

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) |

Current goals

@ A more precise understanding of the sizes of d .4 4.
Recalling that ., tends to 1 as g tends to infinity, for
example, we would like an asymptotic formula for 6., — %

@ A way to decide which i, are likely to be larger than
others as a and b vary (with ¢ fixed), based on elementary
criteria rather than laborious numerical calculation.

These goals are the subject of Inequities in the Shanks-Rényi
prime number race: an asymptotic formula for the densities.

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Asymptotic formula, version |

dq:ap - the “probability” that 7 (x; ¢, a) > 7(x; ¢, b) |

Theorem (Fiorilli and M., 2009+)
Assume GRH and LI.
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Asymptotic formula, version |

dq:ap - the “probability” that 7 (x; ¢, a) > 7(x; ¢, b) J

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod ¢) and b is a
square (mod q), then

P S () B < plg)loglog g >
P2 2y/né(g)logg ¢(q)'/*(log q)*/2 )"

How often is 7 (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Asymptotic formula, version |

dq:ap - the “probability” that 7 (x; ¢, a) > 7(x; ¢, b) J

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod ¢) and b is a
square (mod q), then

P S () B < plg)loglog g >
P2 2y/né(g)logg ¢(q)'/*(log q)*/2 )"

In particular, 6.0 = 1 + 0-(g7'/?*¢) for any ¢ > 0.
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Asymptotic formula, version |

dq:ap - the “probability” that 7 (x; ¢, a) > 7(x; ¢, b)

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod ¢) and b is a
square (mod q), then

PR SR () < p(q)loglogg )
“b = 2" 2 /nd(q) logq ¢(q)'/*(logq)3/? )"

In particular, 6.0 = 1 + 0-(g7'/?*¢) for any ¢ > 0.

p(q) = the number of square roots of 1 (mod ¢)
_ z#number of odd prime factors of ¢ % {1, 2, or 4}

How often is = (x; ¢, a) larger than = (x; ¢, b)?

Greg Martin
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Graph of the densities

We have a full asymptotic series for §(q; a, b), allowing us to
compute the densities rapidly for ¢(¢) > 80, say (which is when
the numerical integration technique becomes worse).

Figure: All densities d,.4,, With ¢ < 1000
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Asymptotic formula, version |l

dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) |

Theorem (Fiorilli and M., 2009+)
Assume GRH and LI. If a is a nonsquare (mod ¢) and b is a
square (mod g), then

1 p(q) _3/2
Spap = = + ——=2L 4 O(q3/?Fe),
b =2 27V (q;a,b) la )
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Asymptotic formula, version |l
dq:ap - the “probability” that 7 (x; ¢, a) > m(x; ¢, b) |

Theorem (Fiorilli and M., 2009+)

Assume GRH and LI. If a is a nonsquare (mod ¢) and b is a
square (mod g), then

1 p(q) _3/2
Sgap = = + ——L 4 o(g7¥2+e),

where V(q; a, b) is the variance of a particular distribution, and

Vigab) =2 3 k) -x@P 3 - +172'

X (mod g) v>0 4
X#X0 L(3+iv,x)=0

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Three terms depending on a and b

The variance, evaluated
1
Vigia,b)=2 > [x(b) —x@ >

1 2
X (mod ¢) I
X#X0 L(3+iv,x)=0
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Three terms depending on a and b

The variance, evaluated
1
Vigia,b)=2 > [x(b) —x@ >

1 2
X (mod g o at7
X#X0 L(3+iv,x)=0
=2¢ (logq Zi— (70 +log27) + R, (a—b)>
p\q

+ (2log2)ey(—ab™")¢(q) + 2M(g; a, b).
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Three terms depending on a and b

The variance, evaluated
1
Vigia,b)=2 > [x(b) —x@ >

1 2
X (mod q) 7>0 7T
XFX0 L(3+iv,x)=0
=2¢ (logq Z—— 'yo+log27r)+R(ab)>
p\q

+ (210g2)1,(~ab~")d(g) + 2M(g; a,b).

There are three terms in this formula for the variance V(g; a, b)
that depend on a and b.
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Three terms depending on a and b

The variance, evaluated
1
Vigia,b)=2 > [x(b) —x@ >

1 2
X (mod q) 7>0 7T
XFX0 L(3+iv,x)=0
=2¢ (logq Z—— 'yo+log27r)+R(ab)>
p\q

+ (210g2)1,(~ab~")d(g) + 2M(g; a,b).

There are three terms in this formula for the variance V(g; a, b)
that depend on a and b. Whenever any of the three is bigger
than normal, the variance increases,

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Three terms depending on a and b

The variance, evaluated
1
Vigia,b)=2 > [x(b) —x@ >

1 2
X (mod q) 7>0 7T
XFX0 L(3+iv,x)=0
=2¢ <logq Z—— 'yo+log27r)+R(ab)>
p\q

+ (2log2)ey(—ab™ ") p(q) + 2M(g; a, b).

There are three terms in this formula for the variance V(g; a, b)
that depend on a and b. Whenever any of the three is bigger
than normal, the variance increases, causing the density

1
Ogab = 5 + .C)— +0(g7¥%%) to decrease.

2 27wV (q;a,b)

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Terms depending on a and b

The variance when the modulus ¢ is prime and b = 1

V(g;a, 1) =2q(logq — (o + log 2m) + (2log 2)¢4(a))
+2M(g;a, 1) + O(logq).
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Terms depending on a and b

The variance when the modulus ¢ is prime and b = 1

V(g;a,1) = 2q(logq — (70 + log2m) + (21og2)ty(a))
+2M(g;a, 1) + O(log g).

o 1(a) = 1, ifa=—1(modyg),
70, ifa# —1 (modg)

How often is = (x; ¢, a) larger than = (x; ¢, b)? Greg Martin



5 minutes defining notation 5 minutes about dependence on the modulus 5 minutes about dependence on the residue classes
00000 000 00000

Terms depending on a and b

The variance when the modulus ¢ is prime and b = 1

V(g;a, 1) =2q(logq — (o + log 2m) + (2log 2)¢4(a))
+2M(g;a, 1) 4+ O(logq).

o 1(a) = 1, ifa=—1(modyg),
70, ifa# —1 (modg)

L'(1,x
o Migal)= 3 |1-x(a)p ZX)
L(1,x)

x (mod q)

X#Xo
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Terms depending on a and b

The variance when the modulus ¢ is prime and b = 1

V(g;a, 1) =2q(logq — (o + log 2m) + (2log 2)¢4(a))
+2M(g;a, 1) + O(log g).

o 1(a) = 1, ifa=—1(modyg),
70, ifa# —1 (modg)

L'(1,x) .
o M(q;a, 1) = 1 —x(a)]? 22 Moreover, if
(Ga, )= > |1 —x(a) T
X (mod q)
XFX0
1 <a,a< qgaresuchthata =a~! (mod g), then
A A(a
M(g;a,1) = q(ia) + ?) + O(logg).

How often is 7 (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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Graph of normalized densities

Figure: Densities d4,4,1 for primes ¢, after a normalization to display
them at the same scale
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Graph of normalized densities

Figure: Densities d4,4,1 for primes ¢, after a normalization to display
them at the same scale
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Top Ten List

Top 10 Most Unfair Races
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Top Ten List

Top 10 Most Unfair Races

Modulus ¢ | Winner a | Loser b | Proportion i,
24 5 1 99.9987%
24 11 1 99.9982%
12 11 1 99.9976%
24 23 1 99.9888%
24 7 1 99.9833%
24 19 1 99.9718%
8 3 1 99.9568%
12 5 1 99.9206%
24 17 1 99.9124%
3 2 1 99.9064%

How often is 7 (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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The end

5 minutes about dependence on the residue classes
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The survey article Prime number races, with Andrew

Granville
www.math.ubc.ca/~gerg/index.shtml?abstract=PNR

My research on prime number races

www.math.ubc.ca/~gerg/
index.shtml?abstract=ISRPNRAFD

These slides

www.math.ubc.ca/~gerg/index.shtml?slides

How often is « (x; ¢, a) larger than = (x; ¢, b)? Greg Martin
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