Wednesday, February 13

Clicker Questions

An antiderivative we'll need later

Find an antiderivative of $\frac{-e^x}{(1+e^x)^2}$.

A.
$$\tan^{-1}(e^{x})$$

B. $\frac{1}{1+e^{x}}$
C. $-\ln((1+e^{x})^{2})$
D. $\ln|1+e^{x}| - \frac{1}{(1+e^{x})^{2}}$

E. none of the above

Clicker Question 2

Comparing two improper integrals

We saw Friday that $\int_{1}^{\infty} \frac{1}{x^2} dx$ is convergent. Suppose that $0 \le g(x) \le \frac{1}{x^2}$ for all $x \ge 1$. What do you think we can say about $\int_{1}^{\infty} g(x) dx$?

- A. might be convergent or divergent, depending on the formula for g(x)
- B. definitely convergent
- C. has a negative value
- D. impossible to tell, even with the formula for g(x)
- E. definitely divergent

Just a moment

A 6-gram object is placed 3 cm to the right of the origin, and a 14-gram object is placed 2 cm to the left of the origin. How much mass must be placed 1 cm to the right of the origin to make the total moment (with respect to the origin) equal to 0?

A. 10 grams

- B. 5 grams
- C. 8 grams
- D. 44 grams
- E. none of the above