Wednesday, February 13

Clicker Questions

Clicker Question 1

An antiderivative we'll need later

Find an antiderivative of $\frac{-e^{x}}{\left(1+e^{x}\right)^{2}}$.
A. $\tan ^{-1}\left(e^{x}\right)$
B. $\frac{1}{1+e^{x}}$
C. $-\ln \left(\left(1+e^{x}\right)^{2}\right)$
D. $\ln \left|1+e^{x}\right|-\frac{1}{\left(1+e^{x}\right)^{2}}$
E. none of the above

Clicker Question 2

Comparing two improper integrals

We saw Friday that $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ is convergent. Suppose that $0 \leq g(x) \leq \frac{1}{x^{2}}$ for all $x \geq 1$. What do you think we can say about

$$
\int_{1}^{\infty} g(x) d x ?
$$

A. might be convergent or divergent, depending on the formula for $g(x)$
B. definitely convergent
C. has a negative value
D. impossible to tell, even with the formula for $g(x)$
E. definitely divergent

Clicker Question 3

Just a moment

A 6-gram object is placed 3 cm to the right of the origin, and a $14-$ gram object is placed 2 cm to the left of the origin. How much mass must be placed 1 cm to the right of the origin to make the total moment (with respect to the origin) equal to 0 ?

A. 10 grams
B. 5 grams
C. 8 grams
D. 44 grams
E. none of the above

