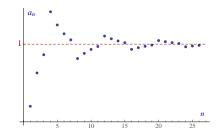
Wednesday, February 27

Clicker Questions

Clicker Question 1

Graph of a sequence

Based on the terms of the sequence you can see, does $\{a_n\}$ converge to 1 or not?



- A. no, because there's no formula for the values
- B. no, because some values are above 1 while other values are below 1
- C. no, because some values are farther away from 1 than previous values
- D. yes, because the values will get as close to 1 as we like if we go far enough
- E. yes, because each value is closer to 1 than the previous value

Clicker Question 2

Functions and sequences

If a function f(x) is defined for all positive real numbers, we can consider the sequence $\{f(n)\} = \{f(1), f(2), f(3), \dots\}$. What can we say about the relationship between the limit of the function $\lim_{x\to\infty} f(x)$, and the limit of the sequence $\lim_{n\to\infty} f(n)$?

- A. If $\lim_{n\to\infty} f(n)$ converges, then $\lim_{x\to\infty} f(x)$ converges to the same value.
- B. $\lim_{x\to\infty} f(x)$ converges to a value exactly when $\lim_{n\to\infty} f(n)$ converges to the same value.
- C. There is no reliable relationship between $\lim_{x\to\infty} f(x)$ and $\lim_{n\to\infty} f(n)$.

- D. $\lim_{x\to\infty} f(x)$ diverges exactly when $\lim_{n\to\infty} f(n)$ diverges.
- E. If $\lim_{x\to\infty} f(x)$ converges, then $\lim_{n\to\infty} f(n)$ converges to the same value.

Clicker Question 3

Applying the Squeeze Theorem

Calculate $\lim_{n\to\infty}$	$(-1)^n + 2n + 3\cos 4n$
	n.

A. 0	Two bounding sequences
B. 1	Since $(-1)^n$ is either -1 or 1, and $3\cos 4n$ is
C. 2	always between -3 and 3, the limit must lie
D. 3	between
E. 4	$\lim_{n \to \infty} rac{2n-4}{n}$ and $\lim_{n \to \infty} rac{2n+4}{n}$,
	both of which equal 2.

Will this problem send you to the hospital?

Evaluate $\lim_{n\to\infty} \frac{\ln n}{n^{1/9}}$.

- A. converges to 9
- B. converges to 1
- C. converges to 0
- D. diverges
- E. converges to 1/9

Using l'Hospital's Rule

It suffices to calculate $\lim_{x\to\infty}\frac{\ln x}{x^{1/9}}$, which is an $\frac{\infty}{\infty}$ indeterminate form. Its limit is therefore equal to

$$\lim_{x \to \infty} \frac{(\ln x)'}{(x^{1/9})'} = \lim_{x \to \infty} \frac{1/x}{x^{-8/9}/9}$$
$$= \lim_{x \to \infty} \frac{9}{x^{1/9}} = 0.$$