Wednesday, February 27

Clicker Questions

Clicker Question 1

Graph of a sequence

Based on the terms of the sequence you can see, does
$\left\{a_{n}\right\}$ converge to 1 or not?

A. no, because there's no formula for the values
B. no, because some values are above 1 while other values are below 1
C. no, because some values are farther away from 1 than previous values
D. yes, because the values will get as close to 1 as we like if we go far enough
E. yes, because each value is closer to 1 than the previous value

Clicker Question 2

Functions and sequences

If a function $f(x)$ is defined for all positive real numbers, we can consider the sequence $\{f(n)\}=\{f(1), f(2), f(3), \ldots\}$. What can we say about the relationship between the limit of the function $\lim _{x \rightarrow \infty} f(x)$, and the limit of the sequence $\lim _{n \rightarrow \infty} f(n) ?$
A. If $\lim _{n \rightarrow \infty} f(n)$ converges, then $\lim _{x \rightarrow \infty} f(x)$ converges to the same value.
B. $\lim _{x \rightarrow \infty} f(x)$ converges to a value exactly when $\lim _{n \rightarrow \infty} f(n)$ converges to the same value.
C. There is no reliable relationship between $\lim _{x \rightarrow \infty} f(x)$ and $\lim _{n \rightarrow \infty} f(n)$.
D. $\lim _{x \rightarrow \infty} f(x)$ diverges exactly when $\lim _{n \rightarrow \infty} f(n)$ diverges.
E. If $\lim _{x \rightarrow \infty} f(x)$
converges, then $\lim _{n \rightarrow \infty} f(n)$ converges to the same value.

Clicker Question 3

Applying the Squeeze Theorem

Calculate $\lim _{n \rightarrow \infty} \frac{(-1)^{n}+2 n+3 \cos 4 n}{n}$.
A. 0
B. 1
C. 2
D. 3
E. 4

Two bounding sequences

Since $(-1)^{n}$ is either -1 or 1 , and $3 \cos 4 n$ is always between -3 and 3 , the limit must lie between

$$
\lim _{n \rightarrow \infty} \frac{2 n-4}{n} \text { and } \lim _{n \rightarrow \infty} \frac{2 n+4}{n},
$$

both of which equal 2 .

Clicker Question 4

Will this problem send you to the hospital?

Evaluate $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 9}}$.
A. converges to 9
B. converges to 1
C. converges to 0
D. diverges
E. converges to $1 / 9$

Using l'Hospital's Rule

It suffices to calculate $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / 9}}$, which is an $\frac{\infty}{\infty}$ indeterminate form. Its limit is therefore equal to

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{(\ln x)^{\prime}}{\left(x^{1 / 9}\right)^{\prime}} & =\lim _{x \rightarrow \infty} \frac{1 / x}{x^{-8 / 9} / 9} \\
& =\lim _{x \rightarrow \infty} \frac{9}{x^{1 / 9}}=0 .
\end{aligned}
$$

