Monday, February 4

Clicker Questions

Clicker Question 1

Finding a coefficient

In the partial fraction decomposition

$$
\frac{13+37 x}{(x-2)(x+1)\left(x^{2}+3\right)}=\frac{A}{x-2}+\frac{B}{x+1}+\frac{C x+D}{x^{2}+3}
$$

what is the value of B ?
A. $B=0$
B. $B=-\frac{25}{2}$
C. B is undefined
D. $B=2$
E. $B=3$

The one-by-one approach

Multiply by the big denominator:

$$
\begin{aligned}
13+37 x= & A(x+1)\left(x^{2}+3\right) \\
& +B(x-2)\left(x^{2}+3\right) \\
& +(C x+D)(x-2)(x+1)
\end{aligned}
$$

Then plug in $x=-1$ to get $-24=-12 B$.

Clicker Question 2

When the numerator has larger degree

What is the correct partial fraction expansion of

$$
\frac{2 x^{3}-7 x^{2}+7 x}{x^{2}-4 x+4} ?
$$

A. $2 x+1+\frac{3 x-4}{(x-2)^{2}}$
B. $2 x+\frac{3 x-4}{(x-2)^{2}}$
C. $2 x+\frac{3}{x-2}+\frac{2}{(x-2)^{2}}$
D. $2 x+1-\frac{1}{x-2}+\frac{2 x-2}{(x-2)^{2}}$
E. $2 x+1+\frac{3}{x-2}+\frac{2}{(x-2)^{2}}$

A and E...

... are both equal to

$$
\frac{2 x^{3}-7 x^{2}+7 x}{x^{2}-4 x+4}
$$

but A is not in partial fraction form yet.

Clicker Question 3

The trapezoid rule

What is the total area of the three pictured trapezoids?

A. 43
B. 44
C. 51
D. 56
E. 35

The calculation

The trapezoids have area $\frac{1}{2}(f(1)+f(2))$, $\frac{1}{2}(f(2)+f(3))$, and $\frac{1}{2}(f(3)+f(4))$, for a total area of $\frac{1}{2}(f(1)+2 f(2)+2 f(3)+f(4))$.

