Monday, February 4

Clicker Questions

Clicker Question 1

Finding a coefficient

In the partial fraction decomposition

$$\frac{13+37x}{(x-2)(x+1)(x^2+3)} = \frac{A}{x-2} + \frac{B}{x+1} + \frac{Cx+D}{x^2+3},$$

what is the value of **B**?

A. B = 0B. $B = -\frac{25}{2}$ C. *B* is undefined D. B = 2E. B = 3

The one-by-one approach

Multiply by the big denominator:

$$13 + 37x = A(x + 1)(x^{2} + 3)$$

+ $B(x - 2)(x^{2} + 3)$
+ $(Cx + D)(x - 2)(x + 1)$
Then plug in $x = -1$ to get $-24 = -12$.

Clicker Question 2

When the numerator has larger degree

What is the correct partial fraction expansion of

$$\frac{2x^3 - 7x^2 + 7x}{x^2 - 4x + 4}?$$

A.
$$2x + 1 + \frac{3x - 4}{(x - 2)^2}$$

B. $2x + \frac{3x - 4}{(x - 2)^2}$
C. $2x + \frac{3}{x - 2} + \frac{2}{(x - 2)^2}$
D. $2x + 1 - \frac{1}{x - 2} + \frac{2x - 2}{(x - 2)^2}$
E. $2x + 1 + \frac{3}{x - 2} + \frac{2}{(x - 2)^2}$

A and E . . .

... are both equal to $\frac{2x^3 - 7x^2 + 7x}{x^2 - 4x + 4},$ but A is not in partial frac

but A is not in partial fraction form yet.

Clicker Question 3

The trapezoid rule

What is the total area of the three pictured trapezoids?

- A. 43
- B. 44
- C. 51
- D. 56 E. 35

The calculation

The trapezoids have area $\frac{1}{2}(f(1) + f(2))$, $\frac{1}{2}(f(2) + f(3))$, and $\frac{1}{2}(f(3) + f(4))$, for a total area of $\frac{1}{2}(f(1) + 2f(2) + 2f(3) + f(4))$.