Wednesday, January 16

Clicker Questions

Clicker Question 1

Definite integrals of odd and even functions

Suppose that o(x) is an odd function and e(x) is an even function. Which of the following statements is always true? (Hint: think geometrically.)

A.
$$\int_{-5}^{5} o(x) dx \text{ always equals } 0$$

B.
$$\int_{-5}^{5} o(x) dx \text{ always equals } \int_{-5}^{5} e(x) dx$$

C.
$$\int_{-5}^{5} o(x) dx \text{ is always an odd integer}$$

D.
$$\int_{-5}^{5} e(x) dx \text{ always equals } 0$$

E.
$$\int_{-5}^{5} e(x) dx \text{ is always nonnegative}$$

Clicker Question 2

Find a matching pair

Suppose that *F* is an antiderivative of *f*. Of the following four expressions, which two are equal to each other? (Hint: what is the derivative of F(g(x))? Use FTC part 2.)

A.
$$\int_{a}^{b} f(u) \, du = F(u) \Big]_{a}^{b} = F(b) - F(a)$$

B.
$$\int_{a}^{b} f(g(x))g'(x) \, dx = F(g(x)) \Big]_{a}^{b} = F(g(b)) - F(g(a))$$

C.
$$\int_{g(a)}^{g(b)} f(u) \, du = F(u) \Big]_{g(a)}^{g(b)} = F(g(b)) - F(g(a))$$

D.
$$\int_{f(a)}^{f(b)} g'(x) \, dx = g(x) \Big]_{f(a)}^{f(b)} = g(f(b)) - g(f(a))$$

Clicker Question 3

Area between curves

Calculate the area between the graphs of $y = \sin t$ and $y = \cos t$ from t = 0 to $t = \pi$.

A. 1 B. $2\sqrt{2}$ C. $\sqrt{2} - 1$ D. 2 E. none of the above

Which one is on top?

$$\int_{0}^{\pi/4} (\cos t - \sin t) dt + \int_{\pi/4}^{\pi} (\sin t - \cos t) dt$$