Friday, January 25

Clicker Questions

Clicker Question 1

The integration by parts formula (shorthand version)

$$\int u\,dv = uv - \int v\,du$$

Choosing the parts

Which of the following is a valid choice for using integration by parts on this integral?

$$\int \sin^{-1} x \, dx$$

- A. $u = 1/\sin x$ and dv = dx
- B. $u = \sin^{-1}$ and dv = x dx
- C. $u = \sin^{-1} x$ and dv = dx
- D. $u = \sin x$ and $dv = x^{-1} dx$
- E. $u = \sin x$ and dv = x dx

Clicker Question 2

Integration by parts for definite integrals

The definite integral $\int_{a}^{b} f(x)g'(x) dx$ equals:

A.
$$f(x)g(x)$$
 $\bigg]_a^b - f'(x)g(x)\bigg]_a^b$

B.
$$\int_a^b f(x)g(x) dx - f'(x)g(x) \bigg]_a^b$$

C.
$$f(x)g(x)\Big]_a^b - \int_a^b f'(x)g(x) dx$$

D.
$$\int_a^b f(x)g(x) dx - \int_a^b f'(x)g(x) dx$$

E. none of the above

Clicker Question 3

Double-angle formula

Which identity is a correct identity?

A.
$$\cos 2x = 2\cos^2 x - 1$$

$$B. \cos 2x = \cos^2 x - \sin^2 x$$

C.
$$\cos 2x = 1 - 2\sin^2 x$$

D.
$$\cos 2x = 2 \sin x \cos x$$

E. none of the above

Three correct answers!

These formulas are all equivalent, because

$$\sin^2 x + \cos^2 x = 1.$$