Friday, January 25

Clicker Questions

Clicker Question 1

The integration by parts formula (shorthand version)

$$
\int u d v=u v-\int v d u
$$

Choosing the parts

Which of the following is a valid choice for using integration by parts on this integral?

$$
\int \sin ^{-1} x d x
$$

A. $u=1 / \sin x$ and $d v=d x$
B. $u=\sin ^{-1}$ and $d v=x d x$
C. $u=\sin ^{-1} x$ and $d v=d x$
D. $u=\sin x$ and $d v=x^{-1} d x$
E. $u=\sin x$ and $d v=x d x$

Clicker Question 2

Integration by parts for definite integrals
The definite integral $\int_{a}^{b} f(x) g^{\prime}(x) d x$ equals:
A. $\left.f(x) g(x)]_{a}^{b}-f^{\prime}(x) g(x)\right]_{a}^{b}$
B. $\left.\int_{a}^{b} f(x) g(x) d x-f^{\prime}(x) g(x)\right]_{a}^{b}$
C. $f(x) g(x)]_{a}^{b}-\int_{a}^{b} f^{\prime}(x) g(x) d x$
D. $\int_{a}^{b} f(x) g(x) d x-\int_{a}^{b} f^{\prime}(x) g(x) d x$
E. none of the above

Clicker Question 3

Double-angle formula

Which identity is a correct identity?
A. $\cos 2 x=2 \cos ^{2} x-1$
B. $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
C. $\cos 2 x=1-2 \sin ^{2} x$
D. $\cos 2 x=2 \sin x \cos x$
E. none of the above

Three correct answers!
These formulas are all equivalent, because

$$
\sin ^{2} x+\cos ^{2} x=1
$$

