Monday, January 28

Clicker Questions

That other identity

Which of the following identities is correct?

- A. $\cot^2 x + \csc^2 x = 1$
- $\mathsf{B.} \ \tan^2 x + \sec^2 x = 1$
- $\mathsf{C.} \ \cot^2 x \csc^2 x = 1$
- D. $\sec^2 x \tan^2 x = 1$
- $\mathsf{E.} \ \tan^2 x \sec^2 x = 1$

Easier than memorizing!

Divide both sides of $\sin^2 x + \cos^2 x = 1$ by $\cos^2 x$ to get $\tan^2 x + 1 = \sec^2 x$.

Clicker Question 2

Trickier than it seems

Evaluate $\int \tan x \, dx$.

- A. $(\tan x)/(\sec x) + C$ B. $\ln|\sec x + \tan x| + C$
- **b.** $\ln|\sec x + \tan x| + C$ **c.** $-\ln|\cos x| + C$
- D. $1/(1+x^2) + C$
- E. $\sec^2 x + C$

A sneaky substitution: $u = \cos x$ $\int \tan x \, dx = \int \frac{\sin x \, dx}{\cos x}$ $= \int \frac{-du}{u}$ $= -\ln |u| + C$ $= -\ln |\cos x| + C.$