Monday, March 11

Clicker Questions

Clicker Question 1

Practicing the Limit Comparison Test

Determine the convergence or divergence of these two series:

$$
\text { I. } \sum_{n=7}^{\infty} \frac{1}{2^{n}-100} \quad \text { II. } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{4 n^{5}+6}}
$$

A. I. diverges but II. converges
B. I. converges but II. diverges
C. both I. and II. diverge
D. both I. and II. converge

Series to compare to

I. $\lim _{n \rightarrow \infty} \frac{2^{-n}}{1 /\left(2^{n}-100\right)}=$
$\lim _{n \rightarrow \infty}\left(1-100 \cdot 2^{-n}\right)=1$, and the geometric series $\sum_{n=7}^{\infty} 2^{-n}$ converges.
II. $\lim _{n \rightarrow \infty} \frac{n^{-5 / 3}}{1 / \sqrt[3]{4 n^{5}+6}}=$
$\lim _{n \rightarrow \infty} \sqrt[3]{4+6 n^{-5}}=\sqrt[3]{4}$, and the p-series $\sum_{n=1}^{\infty} n^{-5 / 3}$ converges.

Clicker Question 2

A family of limits

Consider the function $f(x)=x^{k} C^{-x}$, where k and C are constants. Which of the following conditions will ensure that

```
lim}\mp@subsup{x}{}{k}\mp@subsup{C}{}{-x}=0\mathrm{ ?
x->\infty
```

A. $C>k$
B. $x=0$
C. $C>1$
D. $k<0$
E. none of the above

Why C?

"Exponentials always grow/shrink faster than polynomials." One way to justify this: use l'Hospital's Rule on x^{k} / C^{x} many times (at least k times in a row).

Why not A or D?

If $k=-1$ and $C=\frac{1}{2}$, we have
$\lim _{x \rightarrow \infty} x^{-1}\left(\frac{1}{2}\right)^{-x}=\lim _{x \rightarrow \infty} 2^{x} / x=\infty$.

