Friday, March 15

Clicker Questions

Clicker Question 1

Types of convergence

The series $\sum_{n=1}^{\infty} \frac{\sin \left(3^{n}\right)}{3^{n}}$ is ...

We can rule out ...

C and D : conv. always \Longrightarrow one of absolutely conv. or conditionally conv., but never both
E : absolutely conv. always \Longrightarrow conv.
A. ... both absolutely convergent and convergent, but not conditionally convergent.
B. ... both conditionally convergent and convergent, but not absolutely convergent.
C. ... convergent, but neither absolutely convergent nor conditionally convergent.
D. ... absolutely convergent and conditionally convergent and convergent.
E. ... both absolutely convergent and conditionally convergent, but not convergent.

Clicker Question 2

The limit in the Ratio Test

If you apply the Ratio Test to the series
$\sum_{n=3}^{\infty} \frac{(n-1)!}{2^{n(n-1)}}$,
A. ∞
B. 1
C. 0
D. $1 / 2$
E. none of the above

(and so the series converges)

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\lim _{n \rightarrow \infty} \frac{n!/ 2^{(n+1) n}}{(n-1)!/ 2^{n(n-1)}} \\
& =\lim _{n \rightarrow \infty} \frac{n!}{(n-1)!} \frac{2^{n^{2}-n}}{2^{n^{2}+n}} \\
& =\lim _{n \rightarrow \infty} n \cdot \frac{1}{2^{\left(n^{2}+n\right)-\left(n^{2}-n\right)}} \\
& =\lim _{n \rightarrow \infty} n \cdot \frac{1}{2^{2 n}}=\lim _{n \rightarrow \infty} \frac{n}{4^{n}}=0
\end{aligned}
$$

