Wednesday, March 20

Clicker Questions

Clicker Question 1

What about here? ... what about here?

Suppose the power series $\sum_{n=0}^{\infty} c_n(x-3)^n$ converges when x = -2 and diverges when x = -5. Of the values x = -6, x = -4, x = 1, x = 4, x = 7, x = 9, x = 12, where can we be sure that the series converges?

A. at
$$x = -4$$
, $x = 1$, and $x = 4$
B. at $x = -4$, $x = 1$, $x = 4$,
 $x = 7$, and $x = 9$

C. only at x = 1

D. at x = 1, x = 4, and x = 7

E. none of the above

Close enough to 3

The series converges at x = -2, so the radius of convergence is at least |(-2) - 3| = 5. The series diverges at x = -5, so the radius of convergence is at most |(-5) - 3| = 8...

Clicker Question 2

Power series representation

Find a power series that represents $\frac{x^5}{x^2+3}$ on the interval $(-\sqrt{3},\sqrt{3})$.

Using the previous example $\frac{1}{x+3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} x^n \quad (|x| < 3)$ $\frac{1}{x^2+3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x^2)^n \quad (|x^2| < 3)$ $\frac{x^5}{x^2+3} = \sum_{n=0}^{\infty} \frac{(-1)^n}{3^{n+1}} (x^2)^n x^5 \quad (|x| < \sqrt{3})$