Wednesday, March 20

Clicker Questions

Clicker Question 1

What about here? . . . what about here?

Suppose the power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ converges when $x=-2$ and diverges when $x=-5$. Of the values
$x=-6, x=-4, x=1, x=4, x=7, x=9, x=12$, where can we be sure that the series converges?
A. at $x=-4, x=1$, and $x=4$
B. at $x=-4, x=1, x=4$, $x=7$, and $x=9$
C. only at $x=1$
D. at $x=1, x=4$, and $x=7$
E. none of the above

Close enough to 3

The series converges at $x=-2$, so the radius of convergence is at least $|(-2)-3|=5$. The series diverges at $x=-5$, so the radius of convergence is at most $|(-5)-3|=8 \ldots$

Clicker Question 2

Power series representation

Find a power series that represents $\frac{x^{5}}{x^{2}+3}$ on the interval $(-\sqrt{3}, \sqrt{3})$.
A. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{2 n+5}$

Using the previous example

B. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(\sqrt{3})^{n+1}} x^{n}$
C. $\sum_{n=0}^{\infty} \frac{(-1)^{2 n+5}}{3^{2 n+6}} x^{n}$
D. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(\sqrt{3})^{n+1}} x^{5 n}$

$$
\begin{aligned}
\frac{1}{x+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{n} \quad(|x|<3) \\
\frac{1}{x^{2}+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}}\left(x^{2}\right)^{n} \quad\left(\left|x^{2}\right|<3\right) \\
\frac{x^{5}}{x^{2}+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}}\left(x^{2}\right)^{n} x^{5} \quad(|x|<\sqrt{3})
\end{aligned}
$$

E. none of the above

