Friday, March 22

Clicker Questions

Clicker Question 1

New power series from old

Find a power series representation for the function $\ln (1-x)$ on the interval $(-1,1)$.
A. $x-2 x^{2}+3 x^{3}-4 x^{4}+5 x^{5}-\cdots$
B. $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\cdots$
C. $-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}-\frac{x^{4}}{4}-\frac{x^{5}}{5}-\cdots$
D. $x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+\cdots$
E. none of the above

Integrating a power series

$$
\begin{aligned}
\frac{1}{1-x} & =\sum_{n=0}^{\infty} x^{n} \\
-\ln |1-x| & =\int \frac{1}{1-x} d x \\
& =C+\sum_{n=0}^{\infty} \frac{x^{n+1}}{n+1} .
\end{aligned}
$$

Plug in $x=0$ on both sides to get $C=0$.

Clicker Question 2

Related series

Suppose that the series $\sum_{n=3}^{\infty} c_{n}(-6)^{n}$ converges. What can we say about the radius of convergence, R, of the power series

$$
\sum_{n=3}^{\infty} c_{n} n(n-1) x^{n-2} ?
$$

A. $R \geq 6$
B. $R=6$
C. $|R|=6$
D. $R \leq 6$
E. none of the above

Double derivative

Let $f(x)=\sum_{n=3}^{\infty} c_{n} x^{n}$; since the series converges at $x=-6$, its radius of convergence is at least 6 . But
$f^{\prime \prime}(x)=\sum_{n=3}^{\infty} c_{n}\left(x^{n}\right)^{\prime \prime}=\sum_{n=3}^{\infty} c_{n} n(n-1) x^{n-2}$ has the same radius of convergence as the series for $f(x)$ itself; so $R \geq 6$.

