Monday, March 25

Clicker Questions

Clicker Question 1

Factorials are more intense than exponentials

If you apply the Ratio Test to the series $\sum_{n=0}^{\infty} x^{n} / n!$, you will find that it converges for every real number x (in other words, its radius of convergence is ∞). Why can we conclude from this that $\lim _{n \rightarrow \infty} \frac{x^{n}}{n!}=0$ for every real number x ?
A. The Squeeze Theorem
B. The Limit

Comparison Test
C. I'Hospital's Rule
D. The Integral Test
E. The Test for

Divergence

Two statements of the same fact
Given a sequence $\left\{a_{n}\right\}$, the Test for Divergence states that if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ (or if the limit doesn't exist at all), then the series $\sum_{n=0}^{\infty} a_{n}$ diverges.
In other words, if the series $\sum_{n=0}^{\infty} a_{n}$ actually converges, then it must be the case that $\lim _{n \rightarrow \infty} a_{n}=0$.

Clicker Question 2

Finding a Maclaurin series

What is the Maclaurin series for the function $f(x)=e^{x}$?
A. $\sum_{n=0}^{\infty} \frac{e^{x}}{n!}$
B. $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
C. $\sum_{n=0}^{\infty} x^{n}$
D. $\sum_{n=0}^{\infty} e^{x} x^{n}$
E. $\sum_{n=0}^{\infty} \frac{e^{x} x^{n}}{n!}$

The calculation

The Maclaurin series for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

In this case, $f^{(n)}(x)=e^{x}$ for every real number x, and so $f^{(n)}(0)=e^{0}=1$ always.

Clicker Question 3

Finding a Taylor series

The Taylor series for the function $f(x)=1 /(x-5)^{3}$ centred at $a=7$ has the form

$$
c_{0}+c_{1}(x-7)+c_{2}(x-7)^{2}+c_{3}(x-7)^{3}+c_{4}(x-7)^{4}+\cdots .
$$

The five numbers below are $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ in some order. Which one is c_{3} ?

[^0]
The calculation

The Taylor series at a for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

so $c_{3}=f^{(3)}(7) / 3!=f^{\prime \prime \prime}(7) / 6$. Since

$$
f^{\prime \prime \prime}(x)=(-3)(-4)(-5) /(x-5)^{6}
$$

we get $f^{\prime \prime \prime}(7)=(-60) / 2^{6}=-15 / 16$.

[^0]: A. $\frac{1}{8}$
 B. $\frac{3}{16}$
 C. $-\frac{3}{16}$
 D. $-\frac{5}{32}$
 E. $\frac{15}{128}$

