Monday, March 25

Clicker Questions

Clicker Question 1

Factorials are more intense than exponentials

If you apply the Ratio Test to the series $\sum_{n=0}^{\infty} x^n/n!$, you will find that it converges for every real number x (in other words, its radius of convergence is ∞). Why can we conclude from this that $\lim_{n\to\infty} \frac{x^n}{n!} = 0$ for every real number x?

- A. The Squeeze Theorem
- B. The Limit Comparison Test
- C. l'Hospital's Rule
- D. The Integral Test
- E. The Test for Divergence

Two statements of the same fact

Given a sequence $\{a_n\}$, the Test for Divergence states that if $\lim_{n\to\infty} a_n \neq 0$ (or if the limit doesn't exist at all), then the series $\sum_{n=0}^{\infty} a_n$ diverges.

In other words, if the series $\sum_{n=0}^{\infty} a_n$ actually converges, then it must be the case that $\lim_{n\to\infty} a_n = 0$.

Clicker Question 2

Finding a Maclaurin series

What is the Maclaurin series for the function $f(x) = e^x$?

A. $\sum_{n=0}^{\infty} \frac{e^x}{n!}$ $\mathsf{B.} \sum_{n=0}^{\infty} \frac{x^n}{n!}$ $\mathsf{C.} \ \sum_{n=0}^{\infty} x^n$ D. $\sum_{n=0}^{\infty} e^{x} x^{n}$ E. $\sum_{n=0}^{\infty} \frac{e^x x^n}{n!}$

The calculation

The Maclaurin series for a function f(x) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

In this case, $f^{(n)}(x) = e^x$ for every real number *x*, and so $f^{(n)}(0) = e^0 = 1$ always.

Clicker Question 3

Finding a Taylor series

The Taylor series for the function $f(x) = 1/(x-5)^3$ centred at a = 7 has the form

 $c_0 + c_1(x-7) + c_2(x-7)^2 + c_3(x-7)^3 + c_4(x-7)^4 + \cdots$

The five numbers below are c_0, c_1, c_2, c_3, c_4 in some order. Which one is c_3 ?

A.
$$\frac{1}{8}$$

B. $\frac{3}{16}$
C. $-\frac{3}{16}$
D. $-\frac{5}{32}$
E. $\frac{15}{128}$

The calculation

V

The Taylor series at *a* for a function f(x) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

so $c_3 = f^{(3)}(7)/3! = f^{((7))}/6$. Since $f^{((7))}(x) = (-3)(-4)(-5)/(x-5)^6$.

ve get
$$f'''(7) = (-60)/2^6 = -15/16$$
.