Wednesday, March 27

Clicker Questions

Clicker Question 1

Exploiting a power series representation

We have just derived the power series representation

$$
e^{-x}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}
$$

for $|x| \leq 2$. What is the exact value of the convergent sum that we have seen a couple of times now, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} \approx-0.632$?
A. $-\frac{1}{e}$
B. $\frac{1}{e}-1$
C. $\frac{1}{e}$
D. $1-e$
E. none of the above

Making sure the indices match

$$
\begin{aligned}
e^{-x}-1 & =-1+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!} x^{n}
\end{aligned}
$$

Now plug in $x=1$ on both sides.

Clicker Question 2

Recognizing power series

Which of the following series converges to $1 / 2$?
A. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(\pi / 6)^{2 n+1}}{(2 n+1)!}=\sin \frac{\pi}{6}=\frac{1}{2}$
B. $\sum_{n=0}^{\infty}(-1)^{n} \frac{(\pi / 3)^{2 n}}{(2 n)!}=\cos \frac{\pi}{3}=\frac{1}{2}$
C. $\sum_{n=0}^{\infty} \frac{(-\ln 2)^{n}}{n!}=e^{-\ln 2}=\frac{1}{2}$
D. $\sum_{n=1}^{\infty}-\frac{(1-\sqrt{e})^{n}}{n}=\ln (1-(1-\sqrt{e}))=\frac{1}{2}($ note: $|1-\sqrt{e}|<1)$
E. $\sum_{n=1}^{\infty} \frac{4^{n-3 / 2}}{5^{n}}=\frac{4^{-1 / 2} / 5^{1}}{1-4 / 5}=\frac{1}{2}$ (note: $\left.\left|\frac{4}{5}\right|<1\right)$

