Wednesday, April 1

Clicker Questions

Clicker Question 1

Finding a Maclaurin series

What is the Maclaurin series for the function $f(x)=e^{x}$?
A. $\sum_{n=0}^{\infty} x^{n}$

The calculation

The Maclaurin series for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

In this case, $f^{(n)}(x)=e^{x}$ for every real number x, and so $f^{(n)}(0)=e^{0}=1$ always.

Clicker Question 2

Finding a Taylor series

The Taylor series for the function $f(x)=1 /(x-5)^{3}$ centred at $a=7$ has the form

$$
c_{0}+c_{1}(x-7)+c_{2}(x-7)^{2}+c_{3}(x-7)^{3}+c_{4}(x-7)^{4}+\cdots .
$$

The five numbers below are $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$ in some order. Which one is c_{3} ?

[^0]
The calculation

The Taylor series at a for a function $f(x)$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

so $c_{3}=f^{(3)}(7) / 3!=f^{\prime \prime \prime}(7) / 6$. Since

$$
f^{\prime \prime \prime}(x)=(-3)(-4)(-5) /(x-5)^{6}
$$

we get $f^{\prime \prime \prime}(7)=(-60) / 2^{6}=-15 / 16$.

[^0]: A. $-\frac{5}{32}$
 B. $\frac{1}{8}$
 C. $\frac{3}{16}$
 D. $-\frac{3}{16}$
 E. $\frac{15}{128}$

