Wednesday, April 1

Clicker Questions

Clicker Question 1

Finding a Maclaurin series

What is the Maclaurin series for the function $f(x) = e^x$?

The calculation

The Maclaurin series for a function f(x) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

In this case, $f^{(n)}(x) = e^x$ for every real number x, and so $f^{(n)}(0) = e^0 = 1$ always.

Clicker Question 2

Finding a Taylor series

The Taylor series for the function $f(x) = 1/(x-5)^3$ centred at a = 7 has the form

 $c_0 + c_1(x-7) + c_2(x-7)^2 + c_3(x-7)^3 + c_4(x-7)^4 + \cdots$

The five numbers below are c_0, c_1, c_2, c_3, c_4 in some order. Which one is c_3 ?

The calculation

The Taylor series at *a* for a function f(x) is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

so $c_3 = f^{(3)}(7)/3! = f^{((7))}/6$. Since $f^{((7))}(x) = (-3)(-4)(-5)/(x-5)^6$

we get
$$f'''(7) = (-60)/2^6 = -15/16$$
.