Clicker Questions

Clicker Question 1

Fraction with a fancy numerator

Find constants A, B such that $\frac{16 x^{3}+35}{2 x^{2}+5 x+3}=\frac{A}{x+1}+\frac{B}{2 x+3}$.
A. $A=19, B=38$
B. $A=8, B=-\frac{5}{2}$
C. $A=8, B=-20$
D. $A=19, B=-22$
E. no such constants exist

Why don't they exist?

We're being asked to find constants that satisfy

$$
16 x^{3}+35=A(2 x+3)+B(x+1)
$$

but the degree of the left-hand side is too large for that to happen.

Clicker Question 2

The Trapezoid Rule

What is the total area of the three pictured trapezoids?

A. 56
B. 43
C. 35
D. 44
E. 51

The calculation

The trapezoids have area $\frac{1}{2}(f(1)+f(2))$, $\frac{1}{2}(f(2)+f(3))$, and $\frac{1}{2}(f(3)+f(4))$, for a total area of $\frac{1}{2}(f(1)+2 f(2)+2 f(3)+f(4))$.

Clicker Question 3

How big does a function get?

Define $h(x)=x+4-e^{x}$. Find the maximum value, K, of $h(x)$ on the interval $[-1,1]$.
A. $K=1-\frac{1}{e}$
B. $K=3=h(0)$
C. $K=5-e=h(1)$
D. $K=e-1$
E. $K=3-\frac{1}{e}=h(-1)$

Flashback to differential calculus

The maximum is at a critical point or an endpoint;

$$
h^{\prime}(x)=1-e^{x}
$$

so the only critical point is $x=0$.

