Wednesday, February 4

Clicker Questions

Clicker Question 1

\#tbw

If we wanted to use the strategy from Monday on this same integral

$$
\int \frac{\sin ^{5} x}{\cos ^{8} x} d x=\int \sin ^{5} x(\cos x)^{-8} d x
$$

which of the following tactics would we employ?
A. write $\sin ^{5} x(\cos x)^{-8}=\sin x\left(1-\cos ^{2} x\right)^{2}(\cos x)^{-8}$ and set $u=\cos x$
B. write $\sin ^{5} x(\cos x)^{-8}=\sin ^{5} x\left(1-\sin ^{2} x\right)^{-4}$ and set $u=\sin x$
C. write $\sin ^{5} x(\cos x)^{-8}=\sin ^{5} x\left(1-\sin ^{2} x\right)^{-4}$ and set $u=\cos x$
D. write $\sin ^{5} x(\cos x)^{-8}=\sin x\left(1-\cos ^{2} x\right)^{2}(\cos x)^{-8}$ and set $u=\sin x$
E. none of the above

Clicker Question 2

Some quadratic polynomials can be factored into two linear polynomials with real numbers as coefficients:

$$
\begin{aligned}
3 x^{2}+7 x-6 & =(x+3)(3 x-2) \\
x^{2}-5 & =(x+\sqrt{5})(x-\sqrt{5})
\end{aligned}
$$

In general:

When does the quadratic polynomial $a x^{2}+b x+c$ factor into two linear polynomials in this way?
A. when $c \geq 0$
B. when $b^{2}-4 a c \geq 0$
C. when $2 a x+b \geq 0$
D. always
E. when two of the numbers a, b, c have different signs

The reason:

$a x^{2}+b x+c$ factors this way \Longleftrightarrow it has one or two roots $\Longleftrightarrow \sqrt{b^{2}-4 a c}$ is defined (by the quadratic formula)

