Which expression-substitution pair would result in an expression that the identity $1 + \tan^2 \theta = \sec^2 \theta$ would simplify?

(A)
$$\sqrt{a^2 + x^2}, x = a \sec \theta$$

(B) $\sqrt{a^2 + x^2}, x = a \tan \theta$
(C) $\sqrt{x^2 - a^2}, x = a \tan \theta$
(D) $\sqrt{x^2 - a^2}, x = a \sec \theta$
(E) None of the above can be simplified with that identity.

Which expression-substitution pair would result in an expression that the identity $1 + \tan^2 \theta = \sec^2 \theta$ would simplify?

(A)
$$\sqrt{a^2 + x^2}, x = a \sec \theta$$

(B) $\sqrt{a^2 + x^2}, x = a \tan \theta$

(C)
$$\sqrt{x^2 - a^2}, x = a \tan \theta$$

(D)
$$\sqrt{x^2 - a^2}, x = a \sec \theta$$

(E) None of the above can be simplified with that identity.

Which expression-substitution pair would result in an expression that the identity $1 + \tan^2 \theta = \sec^2 \theta$ would simplify?

(A)
$$\sqrt{a^2 + x^2}, x = a \sec \theta$$

(B) $\sqrt{a^2 + x^2}, x = a \tan \theta$
(C) $\sqrt{x^2 - a^2}, x = a \tan \theta$
(D) $\sqrt{x^2 - a^2}, x = a \sec \theta$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

(E) None of the above can be simplified with that identity.

If $\tan \theta = \frac{x}{5}$, then which of the following is true?

(A)
$$\sin \theta = \frac{5}{x}$$

(B) $\sin \theta = \frac{5}{\sqrt{x^2 + 25}}$
(C) $\sin \theta = \frac{\sqrt{x^2 + 25}}{x}$
(D) $\sin \theta = \frac{\sqrt{x^2 + 25}}{5}$
(E) $\sin \theta = \frac{x}{\sqrt{x^2 + 25}}$

If $\tan \theta = \frac{x}{5}$, then which of the following is true?

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 - ● ○ ● ●

(A)
$$\sin \theta = \frac{5}{x}$$

(B) $\sin \theta = \frac{5}{\sqrt{x^2 + 25}}$
(C) $\sin \theta = \frac{\sqrt{x^2 + 25}}{x}$
(D) $\sin \theta = \frac{\sqrt{x^2 + 25}}{5}$
(E) $\sin \theta = \frac{x}{\sqrt{x^2 + 25}}$

+2: