Clicker Question 1

Which expression-substitution pair would result in an expression that the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$ would simplify?
(A) $\sqrt{a^{2}+x^{2}}, x=a \sec \theta$
(B) $\sqrt{a^{2}+x^{2}}, x=a \tan \theta$
(C) $\sqrt{x^{2}-a^{2}}, x=a \tan \theta$
(D) $\sqrt{x^{2}-a^{2}}, x=a \sec \theta$
(E) None of the above can be simplified with that identity.

Clicker Question 1

Which expression-substitution pair would result in an expression that the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$ would simplify?
(A) $\sqrt{a^{2}+x^{2}}, x=a \sec \theta$
(B) $\sqrt{a^{2}+x^{2}}, x=a \tan \theta$
(C) $\sqrt{x^{2}-a^{2}}, x=a \tan \theta$
(D) $\sqrt{x^{2}-a^{2}}, x=a \sec \theta$
(E) None of the above can be simplified with that identity.

Clicker Question 1

Which expression-substitution pair would result in an expression that the identity $1+\tan ^{2} \theta=\sec ^{2} \theta$ would simplify?
(A) $\sqrt{a^{2}+x^{2}}, x=a \sec \theta$
(B) $\sqrt{a^{2}+x^{2}}, x=a \tan \theta$
(C) $\sqrt{x^{2}-a^{2}}, x=a \tan \theta$
(D) $\sqrt{x^{2}-a^{2}}, x=a \sec \theta$
(E) None of the above can be simplified with that identity.

Clicker Question 2

If $\tan \theta=\frac{x}{5}$, then which of the following is true?
(A) $\sin \theta=\frac{5}{x}$
(B) $\sin \theta=\frac{5}{\sqrt{x^{2}+25}}$
(C) $\sin \theta=\frac{\sqrt{x^{2}+25}}{x}$
(D) $\sin \theta=\frac{\sqrt{x^{2}+25}}{5}$
(E) $\sin \theta=\frac{x}{\sqrt{x^{2}+25}}$

Clicker Question 2

If $\tan \theta=\frac{x}{5}$, then which of the following is true?
(A) $\sin \theta=\frac{5}{x}$
(B) $\sin \theta=\frac{5}{\sqrt{x^{2}+25}}$
(C) $\sin \theta=\frac{\sqrt{x^{2}+25}}{x}$
(D) $\sin \theta=\frac{\sqrt{x^{2}+25}}{5}$
(E) $\sin \theta=\frac{x}{\sqrt{x^{2}+25}}$

