Monday, January 12

Clicker Questions

Clicker Question 1

Define $g(x)=\int_{-2}^{x} f(t) d t$, where $f(t)$ is the function to the right.

"Net area so far" function

Between $x=-2$ and $x=3$: on what interval, if any, is $g(x)$ flat? On what interval is $g(x)$ decreasing?
A. $g(x)$ is flat for $-1 \leq x \leq 0$, and decreasing for $0 \leq x \leq 2$
B. $g(x)$ is not flat on any interval, but decreasing for $1 \leq x \leq 3$
C. $g(x)$ is flat for $-1 \leq x \leq 0$, and decreasing for $1 \leq x \leq 3$
D. $g(x)$ is not flat on any interval, but decreasing for $0 \leq x \leq 2$
E. none of the above

Clicker Question 2

Head over heels

Suppose that $g(x)$ is defined by

$$
g(x)=\int_{x}^{8} f(t) d t
$$

(with the variable on the bottom rather than the top). What is $g^{\prime}(x)$ then?
A. $g^{\prime}(x)=-f(x)$
B. $g^{\prime}(x)=-f(8)$
C. $g^{\prime}(x)=f(x)$
D. $g^{\prime}(x)=f(8)$
E. none of the above

One of the properties of integrals tells us that

$$
g(x)=-\int_{8}^{x} f(t) d t .
$$

Clicker Question 3

Composition of functions

Define $h(x)=x^{3}$ and

$$
g(x)=\int_{-1}^{x} 5^{\sqrt{t+2}} d t
$$

What is the composition $(g \circ h)(x)=g(h(x))$?
A. $\int_{-1}^{x}\left(5^{\sqrt{t+2}}\right)^{3} d t$
B. $\left(\int_{-1}^{x} 5^{\sqrt{t+2}} d t\right)^{3}$
C. $\int_{-1}^{x^{3}} 5^{\sqrt{t+2}} d t$
D. $\int_{-1}^{x} 5^{\sqrt{t^{3}+2}} d t$
E. none of the above

