Monday, January 12

Clicker Questions

Clicker Question 1

Define $g(x) = \int_{-2}^{x} f(t) dt$, where f(t) is the function to the right.

"Net area so far" function

Between x = -2 and x = 3: on what interval, if any, is g(x) flat? On what interval is g(x) decreasing?

- A. g(x) is flat for $-1 \le x \le 0$, and decreasing for $0 \le x \le 2$
- **B.** g(x) is not flat on any interval, but decreasing for $1 \le x \le 3$
- C. g(x) is flat for $-1 \le x \le 0$, and decreasing for $1 \le x \le 3$
- D. g(x) is not flat on any interval, but decreasing for $0 \le x \le 2$
- E. none of the above

Clicker Question 2

Head over heels

Suppose that g(x) is defined by

$$g(x) = \int_{x}^{8} f(t) \, dt$$

(with the variable on the bottom rather than the top). What is g'(x) then?

- A. g'(x) = -f(x)B. g'(x) = -f(8)C. g'(x) = f(x)D. g'(x) = f(8)
- E. none of the above

One of the properties of integrals tells us that $g(x) = -\int_8^x f(t) \, dt.$

Clicker Question 3

Composition of functions

Define $h(x) = x^3$ and

$$g(x) = \int_{-1}^{x} 5^{\sqrt{t+2}} dt.$$

What is the composition $(g \circ h)(x) = g(h(x))$?

A.
$$\int_{-1}^{x} \left(5^{\sqrt{t+2}}\right)^{3} dt$$

B.
$$\left(\int_{-1}^{x} 5^{\sqrt{t+2}} dt\right)^{3}$$

C.
$$\int_{-1}^{x^{3}} 5^{\sqrt{t+2}} dt$$

D.
$$\int_{-1}^{x} 5^{\sqrt{t^{3}+2}} dt$$

E. none of the above