Wednesday, January 14

Clicker Questions

Clicker Question 1

A definite integral

Evaluate $\int_{1}^{e^{2}} \frac{1}{t} d t$.
A. 2, since $\left.\int_{1}^{e^{2}} \frac{1}{t} d t=\ln x\right]_{1}^{e^{2}}=\ln \left(e^{2}\right)-\ln (1)=2-0$
B. $1-\frac{1}{e^{4}}$
C. $\frac{1}{e^{2}}-1$
D. $\ln \left(e^{2}\right)-1$
E. none of the above

Clicker Question 2

Recalling properties of derivatives

Suppose that $f(x)$ and $g(x)$ are differentiable functions, and $f^{\prime}(x)=g^{\prime}(x)$ for all x. What is the relationship between f and g ?
A. $f(x)$ is $g(x)$ times a constant
B. $f(x)$ is $g(x)$ plus a constant
C. $f(x)$ and $g(x)$ add to 0
D. $f(x)$ and $g(x)$ are the same function

E. no relationship, totally random

Clicker Question 3

An indefinite integral

If $a>0$ is a constant, what is $\int a^{x} d x$?
A. $\frac{a^{x+1}}{x+1}+C$
B. $a^{x}+C$
C. $\frac{a^{x+1}}{a+1}+C$
D. $\frac{1}{\ln a} a^{x}+C$, as $\frac{d}{d x}\left(\frac{1}{\ln a} a^{x}+C\right)=\frac{1}{\ln a} \frac{d\left(a^{x}\right)}{d x}=\frac{1}{\ln a}\left((\ln a) a^{x}\right)$
E. $(\ln a) a^{x}+C$

Clicker Question 4

What's the right question?

Which of the following indefinite integrals equals $x \sqrt{2 x+3}+C$?
A. $\int \sqrt{2 x+3} d x$
B. $\int(3 \sqrt{x}+\sqrt{3}) d x$
C. $\int \frac{x}{\sqrt{2 x+3}} d x$
D. $\int \frac{3 x+3}{\sqrt{2 x+3}} d x$
E. none of the above

Indefinite integrals: sometimes

 easier to check than find!$$
\begin{aligned}
\frac{d}{d x} & (x \sqrt{2 x+3}+C) \\
& =1 \cdot \sqrt{2 x+3}+x \cdot \frac{1}{2} \frac{2}{\sqrt{2 x+3}}+0 \\
& =\frac{2 x+3}{\sqrt{2 x+3}}+x \cdot \frac{1}{2} \frac{2}{\sqrt{2 x+3}} \\
& =\frac{3 x+3}{\sqrt{2 x+3}}
\end{aligned}
$$

