Monday, January 19

Clicker Questions

Clicker Question 1

Definite integrals of odd and even functions

Suppose that $o(x)$ is an odd function and $e(x)$ is an even function. Which of the following statements is always true? (Hint: think geometrically.)
A. $\int_{-5}^{5} e(x) d x$ always equals 0
B. $\int_{-5}^{5} o(x) d x$ is always an odd integer
C. $\int_{-5}^{5} o(x) d x$ always equals $\int_{-5}^{5} e(x) d x$
D. $\int_{-5}^{5} e(x) d x$ is always nonnegative
E. $\int_{-5}^{5} o(x) d x$ always equals 0

Clicker Question 2

Find a matching pair

Suppose that F is an antiderivative of f. Of the following four expressions, which two are equal to each other? (Hint: what is the derivative of $F(g(x))$? Use FTC part 2.)
A. $\left.\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=F(g(x))\right]_{a}^{b}=F(g(b))-F(g(a))$
B. $\left.\int_{a}^{b} f(u) d u=F(u)\right]_{a}^{b}=F(b)-F(a)$
C. $\left.\int_{f(a)}^{f(b)} g^{\prime}(x) d x=g(x)\right]_{f(a)}^{f(b)}=g(f(b))-g(f(a))$
D. $\left.\int_{g(a)}^{g(b)} f(u) d u=F(u)\right]_{g(a)}^{g(b)}=F(g(b))-F(g(a))$

