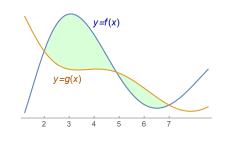
Wednesday, January 21

Clicker Questions

Clicker Question 1

Race to the top

Suppose we know:


• $\int_2^5 f(x) \, dx = 11$

•
$$\int_2^5 g(x) \, dx = 7$$

•
$$\int_5^7 f(x) \, dx = 2$$

•
$$\int_5^7 g(x) \, dx = 3$$

What is the shaded area?

A. 5 =
$$\int_{2}^{5} (f(x) - g(x)) dx + \int_{5}^{7} (g(x) - f(x)) dx$$

B. 14

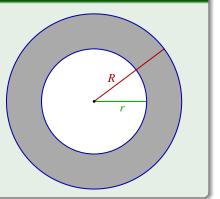
C. 23

D. 3

E. none of the above

Clicker Question 2

Solid of revolution


What is the general formula for the volume of the solid formed by rotating, around the *x*-axis, the graph of y = f(x) between x = a and x = b? (Assume $f(x) \ge 0$.)

A.
$$\int_{a^{2}}^{b^{2}} \pi(f(x))^{2} dx$$

B.
$$\int_{a}^{b} \pi f(x) dx$$

C.
$$\int_{a}^{b} \pi(f(x))^{2} dx$$

D.
$$\int_{a^{2}}^{b^{2}} \pi f(x) dx$$

E. none of the above

Clicker Question 3

Another formula from geometry

What is the area of an annulus with outer radius *R* and inner radius *r*?

A. $\pi (R - r)^2$ B. $\frac{1}{2}\pi Rr$

- C. $\frac{1}{2}\pi(R+r)$
- **D.** $\pi(R^2 r^2)$
- E. none of the above