Midterm \#1 Information

All this can be found on the course web page

- In class (here) on Friday (January 30th); 50 minutes
- Covers material from WeBWorK \#1-3
- Bring ID, writing implement (non-red pen or dark pencil)
- Completely closed book, no calculators
- Format very similar to practice midterms
- Show your work (better = more partial credit)
- You are responsible for not cheating
- Remember to breathe deeply! Every problem on the exam has been carefully crafted to make sure you know how to solve it.

Monday, January 26

Clicker Questions

Clicker Question 1

Combining average values

Suppose the average value of a function $f(x)$ on the interval $[1,2]$ equals 12 , while the average value of the same function on the interval $[2,6]$ equals 2 . What is the average value of $f(x)$ on the inteval [1,6]? Example of such a function: $f(x)=24 / x^{2}$.

Warning and hint

The answer isn't 7 ! Consider $\int_{1}^{6} f(x) d x=\int_{1}^{2} f(x) d x+\int_{2}^{6} f(x) d x$.
A. 14
B. $\sqrt{24}$
C. 10
D. 4
E. more information is needed

Step by step

$$
\begin{aligned}
& \frac{1}{2-1} \int_{1}^{2} f(x) d x=12, \text { so } \int_{1}^{2} f(x) d x=12 \\
& \frac{1}{6-2} \int_{2}^{6} f(x) d x=2, \text { so } \int_{2}^{6} f(x) d x=8 \\
& \text { So } \int_{1}^{6} f(x) d x=12+8=20, \text { which } \\
& \text { means } \frac{1}{6-1} \int_{1}^{6} f(x) d x=4
\end{aligned}
$$

Clicker Question 2

An easy Product Rule

The derivative of $x \sin x$ is $x \cos x+\sin x$.

A tricky antiderivative

What is $\int x \cos x d x$?
A. $x \sin x-\sin x+C$
B. $x \sin x+\sin x+C$
C. $x \sin x-\cos x+C$
D. $x \sin x+\cos x+C$ has derivative $(x \cos x+\sin x)-\sin x$
E. none of the above

