Friday, January 9

Clicker Questions

Clicker Question 1

A jet plane lands on a runway, traveling 70 metres per second. The jet continues down the runway, braking constantly, for 30 seconds before turning off the runway towards the gate. The co-pilot takes note of the speed at 5 -second intervals:

time after landing (sec)	0	5	10	15	20	25	30
speed (m/sec)	70	64	54	40	28	12	10

For which of the following distances can you be sure the jet traveled at most that far in those 30 seconds?
A. $(5 \times 70+5 \times 64+5 \times 54+5 \times 40+5 \times 28+5 \times 12) \mathrm{m}$
B. $(70+64+54+40+28+12) \mathrm{m}$
C. $(5 \times 64+5 \times 54+5 \times 40+5 \times 28+5 \times 12+5 \times 10) \mathrm{m}$
D. $(64+54+40+28+12+10) \mathrm{m}$
E. no way to be sure

Distance traveled: related to area under velocity graph

A. $(5 \times 70+5 \times 64+5 \times 54+5 \times 40+5 \times 28+5 \times 12) \mathrm{m}$
B. $(70+64+54+40+28+12) \mathrm{m}$
C. $(5 \times 64+5 \times 54+5 \times 40+5 \times 28+5 \times 12+5 \times 10) \mathrm{m}$
D. $(64+54+40+28+12+10) \mathrm{m}$
E. no way to be sure

Clicker Question 2

Computing a definite integral geometrically

Draw the graph of $y=5-x$ between $x=0$ and $x=3$, and then use it to compute

$$
\int_{0}^{3}(5-x) d x
$$

A. $9 / 2$
B. 15
C. 6
D. $21 / 2$
E. 21

Clicker Question 3

A negative integrand

What do you think the definition gives us for the definite integral

$$
\int_{0}^{3}(x-5) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(x_{i}^{*}-5\right) \Delta x ?
$$

A. $21 / 2$
B. 0
C. $-21 / 2$
D. $-\infty$
E. not defined

