Friday, January 9

Clicker Questions

A jet plane lands on a runway, traveling 70 metres per second. The jet continues down the runway, braking constantly, for 30 seconds before turning off the runway towards the gate. The co-pilot takes note of the speed at 5-second intervals:

time after landing (sec)	0	5	10	15	20	25	30
speed (m/sec)	70	64	54	40	28	12	10

For which of the following distances can you be sure the jet traveled at most that far in those 30 seconds?

- A. $(5 \times 70 + 5 \times 64 + 5 \times 54 + 5 \times 40 + 5 \times 28 + 5 \times 12)$ m
- **B.** (70 + 64 + 54 + 40 + 28 + 12) m
- **C.** $(5 \times 64 + 5 \times 54 + 5 \times 40 + 5 \times 28 + 5 \times 12 + 5 \times 10)$ m
- D. (64 + 54 + 40 + 28 + 12 + 10) m
- E. no way to be sure

Distance traveled: related to area under velocity graph

- A. $(5 \times 70 + 5 \times 64 + 5 \times 54 + 5 \times 40 + 5 \times 28 + 5 \times 12)$ m
- **B.** (70 + 64 + 54 + 40 + 28 + 12) m
- **C.** $(5 \times 64 + 5 \times 54 + 5 \times 40 + 5 \times 28 + 5 \times 12 + 5 \times 10)$ m
- D. (64 + 54 + 40 + 28 + 12 + 10) m
- E. no way to be sure

Clicker Question 2

Computing a definite integral geometrically

Draw the graph of y = 5 - x between x = 0 and x = 3, and then use it to compute

 $\int_0^3 (5-x)\,dx.$

Clicker Question 3

A negative integrand

What do you think the definition gives us for the definite integral $\int_{-\infty}^{3} (x - 5) dx = \lim_{n \to \infty} \sum_{n=1}^{n} (x^* - 5) \Delta x^2$

$$\int_{0}^{\infty} (x-5) \, dx = \lim_{n \to \infty} \sum_{i=1}^{\infty} (x_{i}^{*}-5) \Delta x?$$

A. 21/2B. 0 C. -21/2D. $-\infty$ E. not defined

