Wednesday, March 18

Clicker Questions

Clicker Question 1

The Alternating Series Test

Which of the following series can the Alternating Series Test be applied to?
A. $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\cdots$
B. $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$
C. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1+\cos n}{n}$
D. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{1}{2}+\frac{1}{n}\right)$
E. none of the above

Reasons

A is not alternating in the correct way
B is not alternating at all
C does not have a decreasing sequence
D does not have a summand that tends to 0

Clicker Question 2

I love to count

How many of these objects converge?

- the sequence $\left\{\frac{1}{\sqrt{n}}\right\}$
- the sequence $\left\{(-1)^{n} \frac{1}{\sqrt{n}}\right\}$
- the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
- the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$
A. 0
B. 1
C. 2
D. 3
E. 4

Which ones?

The two sequences both converge to 0 (the second one using a mini-Squeeze Theorem argument). The first series is a p-series with $p=\frac{1}{2}$, so diverges. The second series passes the Alternating Series Test, so converges.

