Office hours through the end of classes

A few changes

- Thursday, March 26: from 12:30-2:00pm (one hour earlier than usual)
- Monday, March 30: usual time (11:00am-12:30pm), but I might be late (a PhD student is defending their dissertation that morning)
- Thursday, April 2: 1:30-3:00pm as usual
- Monday, April 6: University holiday, so no in-person office hours; l'll hold Piazza office hours from 11:00am-12:30pm
- Thursday, April 9: 1:30-3:00pm as usual
l'll post the changes on our section's web page.

Monday, March 23

Clicker Questions

Clicker Question 1

A series with a parameter

Using the Ratio Test, determine values of C for which the series

$$
\sum_{n=1}^{\infty} \frac{\tan ^{-1} n}{(-3)^{n}} C^{n}
$$

converges and diverges.

Bigger or smaller than 1 ?

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| \\
&=\lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n+1) \cdot|C|^{n+1} / 3^{n+1}}{\tan ^{-1} n \cdot|C|^{n} / 3^{n}} \\
&=\lim _{n \rightarrow \infty}\left(\frac{\tan ^{-1}(n+1)}{\tan ^{-1} n} \cdot \frac{|C|}{3}\right) \\
&=\frac{\pi / 2}{\pi / 2} \frac{|C|}{3}=\frac{|C|}{3}
\end{aligned}
$$

A. converges for $-3<C<3$; diverges for $C>3$ and $C<-3$
B. converges for $-\frac{1}{3}<C<\frac{1}{3}$; diverges for $C>\frac{1}{3}$ and $C<-\frac{1}{3}$
C. converges for $0<C<\frac{1}{3}$; diverges for $C>\frac{1}{3}$ and $C<0$
D. converges for $-3<C<0$; diverges for $C>0$ and $C<-3$
E. none of the above

Clicker Question 2

An off-centre power series

On which of the following intervals does $\sum_{n=0}^{\infty} 2 n^{3}(x-5)^{n}$ converge?
A. $-6<x<-4$
B. $4<x<6$
C. $-6<x<6$
D. $-1<x<1$
E. none of the above

Still the Ratio Test

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{2(n+1)^{3}|x-5|^{n+1}}{2 n^{3}|x-5|^{n}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{3}}{n^{3}}|x-5| \\
& =|x-5|
\end{aligned}
$$

And $|x-5|<1$ precisely when $4<x<6$. (Check $x=4$ and $x=6$ separately, using the Test for Divergence.)

