Office hours through the end of classes

A few changes

- Thursday, March 26: from 12:30-2:00pm (one hour earlier than usual)
- Monday, March 30: usual time (11:00am-12:30pm), but I might be late (a PhD student is defending their dissertation that morning)
- Thursday, April 2: 1:30-3:00pm as usual
- Monday, April 6: University holiday, so no in-person office hours; l'll hold Piazza office hours from 11:00am-12:30pm
- Thursday, April 9: 1:30-3:00pm as usual

These changes have been posted on our section's web page.

Wednesday, March 25

Clicker Questions

Clicker Question 1

What about here? . . . what about here?

Suppose the power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ converges when $x=-2$ and diverges when $x=-5$. Of the values
$x=-6, x=-4, x=1, x=4, x=7, x=9, x=12$, where can we be sure that the series converges?
A. at $x=1, x=4$, and $x=7$
B. at $x=-4, x=1$, and $x=4$
C. at $x=-4, x=1, x=4$, $x=7$, and $x=9$ (maybe)
D. only at $x=1$
E. none of the above

Close enough to 3

The series converges at $x=-2$, so the radius of convergence is at least $|(-2)-3|=5$. The series diverges at $x=-5$, so the radius of convergence is at most $|(-5)-3|=8 \ldots$.

Clicker Question 2

e-sy question?

Which of the following expressions equals Euler's number e ?
A. the unique number t such that $\lim _{h \rightarrow 0} \frac{t^{h}-1}{h}=1$
B. $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
C. $\lim _{n \rightarrow \infty} \frac{n}{\sqrt[n]{n!}}$
D. $\sum_{n=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots$
E. all of the above

