Office hours through the end of classes

A few changes

- Thursday, March 26: from 12:30–2:00pm (one hour earlier than usual)
- Monday, March 30: usual time (11:00am–12:30pm), but I might be late (a PhD student is defending their dissertation that morning)
- Thursday, April 2: 1:30-3:00pm as usual
- Monday, April 6: University holiday, so no in-person office hours; I'll hold Piazza office hours from 11:00am–12:30pm
- Thursday, April 9: 1:30–3:00pm as usual

These changes have been posted on our section's web page.

Wednesday, March 25

Clicker Questions

Clicker Question 1

What about here? ... what about here?

Suppose the power series $\sum_{n=0}^{\infty} c_n(x-3)^n$ converges when x = -2 and diverges when x = -5. Of the values x = -6, x = -4, x = 1, x = 4, x = 7, x = 9, x = 12, where can we be sure that the series converges?

A. at x = 1, x = 4, and x = 7

B. at
$$x = -4$$
, $x = 1$, and $x = 4$

C. at
$$x = -4$$
, $x = 1$, $x = 4$,
 $x = 7$, and $x = 9$ (maybe)

D. only at x = 1

E. none of the above

Close enough to 3

The series converges at x = -2, so the radius of convergence is at least |(-2) - 3| = 5. The series diverges at x = -5, so the radius of convergence is at most |(-5) - 3| = 8...

e-sy question?

Which of the following expressions equals Euler's number e?

A. the unique number *t* such that $\lim_{h\to 0} \frac{t^h - 1}{h} = 1$

E. all of the above