Friday, March 27

Clicker Questions

Clicker Question 1

Power series representation

Find a power series that represents $\frac{x^{5}}{x^{2}+3}$ on the interval $(-\sqrt{3}, \sqrt{3})$.
A. $\sum_{n=0}^{\infty} \frac{(-1)^{2 n+5}}{3^{2 n+6}} x^{n}$

Using the previous example
B. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(\sqrt{3})^{n+1}} x^{5 n}$
C. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(\sqrt{3})^{n+1}} x^{n}$
D. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{2 n+5}$

$$
\begin{aligned}
\frac{1}{x+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}} x^{n} \quad(|x|<3) \\
\frac{1}{x^{2}+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}}\left(x^{2}\right)^{n} \quad\left(\left|x^{2}\right|<3\right) \\
\frac{x^{5}}{x^{2}+3} & =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3^{n+1}}\left(x^{2}\right)^{n} x^{5} \quad(|x|<\sqrt{3})
\end{aligned}
$$

E. none of the above

